Skip to main content
Log in

Genetic Divergence and Evolutionary Transition/Transversion Rate Bias in the Control Region of Mitochondrial DNA of Palearctic Mice (Murinae)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Genetic divergence and evolutionary shift of transitions and transversions ratio were analyzed based on examples of 60 sequences of the mtDNA control region of 27 species of mice (Murinae) of the Palearctic region. Representatives of Cricetidae and Arvicolidae were taken as outgroups. The constructed phenogram corresponds to the accepted phylogenetic scheme and is clustered according to population, semispecies, allospecies, species, genus and family levels of divergence. In the phyletic order there is a clearly defined evolutionary transition/transversion rate bias. Its distinction is an extremely fast and abrupt transition from dynamic to stable phase. The dynamic phase is a rapid decrease in the ti/tv rate ratio and refers to the population and semispecies divergence levels. The stable phase refers to the species level and higher divergence levels and is associated with reaching a state of genetic saturation in a situation of predominance of transversions. The extreme denotion of the evolutionary shift in the D-loop case can be explained by the removal of the selection pressure caused by restrictions in amino acid substitutions. This means that the causes of transition/transversion bias are purely biochemical mechanisms on DNA level. Simultaneously, the stability of the ti/tv ratio at species and higher levels amidst the further accumulation of the total number of nucleotide substitutions may indicate a fundamentally different nature of genetic processes at the intraspecies and interspecies levels of divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Altukhov, Yu.P., Population genetics: diversity and stability, Leningrad: Harwood Acad. Publ., 1993, vol. 221–276.

    Google Scholar 

  2. Amadon, D., The superspecies concept, Syst. Zool., 1966, vol. 15, pp. 246–249. https://doi.org/10.2307/sysbio/15.3.245

    Article  Google Scholar 

  3. Abramov, A.V., Meschersky, I.G., and Rozhnov, V.V., On the taxonomic status of the harvest mouse Micromys minutus (Rodentia: Muridae) from Vietnam, Zootaxa, 2009, no. 1, p. 17. https://doi.org/10.11646/zootaxa.2199.1.2

  4. Bellinvia, E., A phylogenetic study of the genus Apodemus by sequencing the mitochondrial DNA control region, J. Zool. Syst. Evol. Res., 2004, vol. 42, pp. 289–297. https://doi.org/10.1111/j.1439-0469.2004.00270.x

    Article  Google Scholar 

  5. Belle, E., Piganeau, G., Gardner, M., and Eyre-Walker, A., An investigation of the variation in the transition bias among various animal mitochondrial DNA, Gene, 2005, vol. 355, pp. 58–66. https://doi.org/10.1016/j.gene.2005.05.019

    Article  CAS  PubMed  Google Scholar 

  6. Brown, W.M., Prager, E.M., Wang, A., and Wilson, A.C., Mitochondrial DNA sequences of primates: Tempo and mode of evolution, J. Mol. Evol., 1982, vol. 18, pp. 225–239. https://doi.org/10.1007/BF01734101

    Article  CAS  PubMed  Google Scholar 

  7. Collins, D.W. and Jukes, T.H., Rates of transition and transversion in coding sequences since the humanrodent divergence, Genomics, 1994, vol. 20, pp. 386–396. https://doi.org/10.1006/geno.1994.1192

    Article  CAS  PubMed  Google Scholar 

  8. Duchene, S., Ho, S.Y., and Holmes, E.C., Declining transition/transversion ratios through time reveal limitations to the accuracy of nucleotide substitution models, BMC Evol. Biol., 2015, vol. 15, p. 36. https://doi.org/10.1186/s12862-015-0312-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ebersberger, I., Metzler, D., Schwarz, C., and Pääbo, S., Genomewide comparison of DNA sequences between humans and chimpanzees, Am. J. Hum. Genet., 2002, vol. 70, no. 6, pp. 1490–1497. https://doi.org/10.1086/340787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fitch, W.M., Evidence suggesting a non-random character to nucleotide replacements in naturally occurring mutations, J. Mol. Biol., 1967, vol. 26, pp. 499–507. https://doi.org/10.1016/0022-2836(67)90317-8

    Article  CAS  PubMed  Google Scholar 

  11. Ge, D., Feijo, A., Cheng, J., et al., Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species, Zool. J. Linn. Soc., 2019, vol. 187, pp. 518–534. https://doi.org/10.1093/zoolinnean/zlz032

    Article  Google Scholar 

  12. Guo, C., McDowell, I.C., Nodzenski, M., et al., Transversions have larger regulatory effects than transitions, BMC Genomics, 2017, vol. 18, p. 394. https://doi.org/10.1186/s12864-017-3785-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar, S., Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates, Genetics, 1996, vol. 143, no. 1, pp. 537–548. https://doi.org/10.1093/genetics/143.1.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lynch, M., Rate, molecular spectrum, and consequences of human mutation, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 961–968. https://doi.org/10.1073/pnas.0912629107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lyons, D.M. and Lauring, A.S., Evidence for the selective basis of transition-to-transversion substitution bias in two RNA viruses, Mol. Biol. Evol., 2017, vol. 34, pp. 3205–3215. https://doi.org/10.1093/molbev/msx251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Macholan, M., Vyskocilova, M., Bonhomme, F., et al., Genetic variation and phylogeography of free-living mouse species (genus Mus) in the Balkans and the Middle East, Mol. Ecol., 2007, vol. 16, no. 22, pp. 4774–4788. https://doi.org/10.1111/j.1365-294X.2007.03526.x

    Article  CAS  PubMed  Google Scholar 

  17. Mallet, J., Subspecies, semispecies, superspecies, Encyclopedia Biodiversity, 2007, vol. 7, pp. 45–48. https://doi.org/10.1016/B978-0-12-384719-5.00138-6

    Article  Google Scholar 

  18. Mezhzherin, S.V., Revision of mice genus Apodemus (Rodentia, Muridae) of Northern Eurasia, Vestn. Zool., 1997a, vol. 31, pp. 29–41.

    Google Scholar 

  19. Mezhzherin, S.V., Genetic differentiation and phylogenetic relationships among Palearctic mice (Rodentia, Muridae), Genetika, 1997b, vol. 33, pp. 78–86.

    CAS  PubMed  Google Scholar 

  20. Michaux, J.R., Chevret Filippucci, M.G., et al., Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rR-NA, Mol. Phylogenet. Evol., 2002, vol. 23, no. 2, pp. 123–136. https://doi.org/10.1016/S1055-7903(02)00007-6

    Article  CAS  PubMed  Google Scholar 

  21. Michaux, J., Bellinvia, E., and Lymberakis, P., Taxonomy, evolutionary history and biogeography of the broadtoothed field mouse (Apodemus mystacinus) in the eastern Mediterranean area based on mitochondrial and nuclear genes, Biol. J. Linn. Soc., 2005, vol. 85, no. 1, pp. 53–63. https://doi.org/10.1111/j.1095-8312.2005.00469.x

    Article  Google Scholar 

  22. Philippe, H., Brinkmann, H., Lavrov, D.V., et al., Resolving difficult phylogenetic questions: why more sequences are not enough, PLoS Biol., 2011, vol. 9, no. 3, p. e1000602. https://doi.org/10.1371/journal.pbio.1000602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosenberg, M.S., Subramanian, S., and Kumar, S., Patterns of transitional mutation biases within and among mammalian genomes, Mol. Biol. Evol., 2003, vol. 20, no. 6, pp. 988–993. https://doi.org/10.1093/molbev/msg113

    Article  CAS  PubMed  Google Scholar 

  24. Rovatsos, M.T., Mitsainas, G.P., Tryfonopoulos, G.A., et al., A chromosomal study on Greek populations of the genus Apodemus (Rodentia, Murinae) reveals new data on B chromosome distribution, Acta Theriol., 2008, vol. 53, no. 2, pp. 157–167.

    Article  Google Scholar 

  25. Stakheev, V.V., Bogdanov, A.S., Malikov, V.G., et al., Genetic differentiation of the steppe field mouse Sylvaemus witherbyi populations: the results of the mitochondrial DNA control region analysis, Dokl. Biochem. Biophys., 2018, vol. 483, pp. 316–320. https://doi.org/10.1134/S1607672918060029

    Article  CAS  PubMed  Google Scholar 

  26. Stoltzfus, A. and Norris, R.W., On the ñauses of evolutionary transition: transversion bias, Mol. Biol. Evol., 2016, https://doi.org/10.1101/027722

  27. Suzuki, H., Sato, J.J., Tsuchiya, K., et al., Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia, Biol. J. Linn. Soc., 2003, vol. 80, pp. 469–481. https://doi.org/10.1046/j.1095-8312.2003.00253.x

    Article  Google Scholar 

  28. Suzuki, H., Nunome, M., Kinoshita, G., et al., Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA, Heredity, 2013, vol. 111, pp. 375–390. https://doi.org/10.1038/hdy.2013.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamura, K. and Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 1993, vol. 10, no. 3, pp. 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  30. Tamura, K., Stecher, G., and Kumar, S., MEGA 11: Molecular evolutionary genetics analysis, Version 11, Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Topal, M.D. and Fresco, J.R., Base pairing and fidelity in codon-anticodon interaction, Nature, 1976a, vol. 263, pp. 289–293. https://doi.org/10.1038/263289a0

    Article  CAS  PubMed  Google Scholar 

  32. Topal, M.D. and Fresco, J.R., Complementary base pairing and the origin of substitution mutations, Nature, 1976b, vol. 263, pp. 285–289. https://doi.org/10.1038/263285a0

    Article  CAS  PubMed  Google Scholar 

  33. Vogel, F. and Kopun, M., Higher frequencies of transitions among point mutations, J. Mol. Evol., 1977, vol. 9, pp. 159–180. https://doi.org/10.1007/BF01732746

    Article  CAS  PubMed  Google Scholar 

  34. Yang, Z. and Yoder, A.D., Estimation of the transition/transversion rate bias and species sampling, J. Mol. Evol., 1999, vol. 48, pp. 274–283. https://doi.org/10.1007/PL00006470

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or non-commercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Mezhzherin or V. O. Tereshchenko.

Ethics declarations

The authors declare the absence of any conflicts of interest.

This article does not contain any research using humans or animals as objects.

Additional information

Translated by V. Tereshchenko

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezhzherin, S.V., Tereshchenko, V.O. Genetic Divergence and Evolutionary Transition/Transversion Rate Bias in the Control Region of Mitochondrial DNA of Palearctic Mice (Murinae). Cytol. Genet. 57, 213–220 (2023). https://doi.org/10.3103/S0095452723030076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723030076

Keywords:

Navigation