Skip to main content
Log in

Inner and Outer DNA Loops in Cell Nuclei: Evidence from Pulsed-Field Comet Assay

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

At higher order levels chromatin is organized into loops, and this looping plays an important role in transcription regulation. In our previous works we investigated the kinetics of DNA loop migration during single cell gel electrophoresis (the comet assay) of nucleoids obtained from lysed cells. It was shown that there are three parts of DNA in nucleoids: DNA in rather small loops which migrate rapidly; DNA in the loops up to ~150 kb, the migration of which is retarded; and larger loops that cannot migrate. Here we applied, for the first time, the pulse-field electrophoresis in the comet assay. Our results show that the first rapid step during the usual comet assay can be attributed to loops on the nucleoid surface while the second slow component represents loops inside the nucleoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Afanasieva, K., Zazhytska, M., and Sivolob, A., Kinetics of comet formation in single–cell gel electrophoresis: Loops and fragments, Electrophoresis, 2010, vol. 31, no. 3, pp. 512–519. https://doi.org/10.1002/elps.200900421

    Article  CAS  PubMed  Google Scholar 

  2. Afanasieva, K., Chopei, M., Zazhytska, M., et al., DNA loop domain organization as revealed by single-cell gel electrophoresis, Biochim. Biophys. Acta, Mol. Cell Res., 2013, vol. 1833, no. 12, pp. 3237–3244. https://doi.org/10.1016/j.bbamcr.2013.09.021

    Article  CAS  Google Scholar 

  3. Afanasieva, K., Chopei, M., Lozovik, A., et al., Redistribution of DNA loop domains in human lymphocytes under blast transformation with interleukin 2, Ukr. Biochem. J., 2016, vol. 88, no. 6, pp. 45–51. https://doi.org/10.15407/ubj88.06.045

    Article  CAS  PubMed  Google Scholar 

  4. Afanasieva, K., Chopei, M., Lozovik, A., et al., DNA loop domain organization in nucleoids from cells of different types, Biochem. Biophys. Res. Commun., 2017, vol. 483, no. 1, pp. 142–146. https://doi.org/10.1016/j.bbrc.2016.12.177

    Article  CAS  PubMed  Google Scholar 

  5. Afanasieva, K. and Sivolob, A., Physical principles and new applications of comet assay, Biophys. Chem., 2018, vol. 238, pp. 1–7. https://doi.org/10.1016/j.bpc.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  6. Aughey, G. and Southall, T., Dam it’s good! DamID profiling of protein-DNA interactions, Wiley Interdiscip. Rev.: Dev. Biol., 2015, vol. 5, no. 1, pp. 25–37. https://doi.org/10.1002/wdev.205

    Article  CAS  Google Scholar 

  7. Chopei, M., Afanasieva, K., and Sivolob, A., Protein intercalation in DNA as one of main modes of fixation of the most stable chromatin loop domains, Ukr. Biochem. J., 2014, vol. 86, no. 4, pp. 110–118.

    Article  CAS  Google Scholar 

  8. Cook, P. and Brazell, I., Super coils in human DNA, J. Cell Sci., 1975, vol. 19, no. 2, pp. 261–279.

    Article  CAS  Google Scholar 

  9. Cook, P., A model for all genomes: the role of transcription factories., J. Mol. Biol., 2010, vol. 395, no. 1, pp. 1–10. https://doi.org/10.1016/j.jmb.2009.10.031

    Article  CAS  PubMed  Google Scholar 

  10. Défontaines, A.D. and Viovy, J.L., Gel electrophoresis of an end-labeled DNA I. Dynamics and trapping in constant fields, Electrophoresis, 1993, vol. 14, no. 1, pp. 8‒17. https://doi.org/10.1002/elps.1150140103

    Article  PubMed  Google Scholar 

  11. Dekker, J., Marti-Renom, M., and Mirny, L., Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data, Nat. Rev. Genet., 2013, vol. 14, no. 6, pp. 390–403. https://doi.org/10.1038/nrg3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dekker, J. and Misteli, T., Long-range chromatin interactions, Cold Spring Harbor Perspect. Biol., 2015, vol. 7, no. 10, art. ID a019356. https://doi.org/10.1101/cshperspect.a019356

    Article  Google Scholar 

  13. Kadauke, S. and Blobel, G., Chromatin loops in gene regulation, Biochim. Biophys. Acta, Gene Regul. Mech., 2009, vol. 1789, no. 1, pp. 17–25.https://doi.org/10.1016/j.bbagrm.2008.07.002

    Article  CAS  Google Scholar 

  14. Kieffer-Kwon, K., Nimura, K., Rao, S., et al., Myc regulates chromatin decompaction and nuclear architecture during B cell activation, Mol. Cell, 2017, vol. 67, no. 4, pp. 566–578. https://doi.org/10.1016/j.molcel.2017.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kind, J., Pagie, L., de Vries, S., et al., Genome wide maps of nuclear lamina interactions in single human cells, Cell, 2015, vol. 163, no. 1, pp. 134–147. https://doi.org/10.1016/j.cell.2015.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krietenstein, N., Abraham, S., Venev, S., et al., Ultrastructural details of mammalian chromosome architecture, Mol. Cell, 2020, vol. 78, pp. 554–565. https://doi.org/10.1016/j.molcel.2020.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao, W., McNutt, M., and Zhu, W., The comet assay: A sensitive method for detecting DNA damage in individual cells, Methods, 2009, vol. 48, no. 1, pp. 46–53. https://doi.org/10.1016/j.ymeth.2009.02.016

    Article  CAS  PubMed  Google Scholar 

  18. Lieberman-Aiden, E., van Berkum, N., Williams, L., et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 2009, vol. 326, no. 5950, pp. 289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maston, G., Evans, S., and Green, M., Transcriptional regulatory elements in the human genome, Ann. Rev. Genomics Hum. Genet., 2006, vol. 7, pp. 29–59. https://doi.org/10.1146/annurev.genom.7.080505.115623

    Article  CAS  Google Scholar 

  20. Meuleman, W., Peric-Hupkes, D., Kind, J., et al., Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence, Genome Res., 2012, vol. 23, no. 2, pp. 270–280. https://doi.org/10.1101/gr.141028.112

    Article  CAS  PubMed  Google Scholar 

  21. Nagano, T., Lubling, Y., Stevens, T., et al., Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature, 2013, vol. 502, no. 7469, pp. 59–64. https://doi.org/10.1038/nature12593

    Article  CAS  PubMed  Google Scholar 

  22. Ong, C. and Corces, V., CTCF: An architectural protein bridging genome topology and function, Nat. Rev. Genet., 2014, vol. 15, no. 4, pp. 234–246. https://doi.org/10.1038/nrg3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olive, P., The comet assay: an overview of techniques, Methods Mol. Biol., 2002, vol. 203, pp. 179–194. https://doi.org/10.1385/1-59259-179-5:179

    Article  CAS  PubMed  Google Scholar 

  24. Rao, S., Huntley, M., Durand, N., et al., A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, 2014, vol. 159, no. 7, pp. 1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodríguez-Ubreva, J. and Ballestar, E., Chromatin Immunoprecipitation, Methods Mol. Biol., 2014, vol. 1094, pp. 309–318. https://doi.org/10.1007/978-1-62703-706-8_24

    Article  CAS  PubMed  Google Scholar 

  26. Sanborn, A., Rao, S., Huang, S., et al., Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 47, pp. E6456–E6465. https://doi.org/10.1073/pnas.1518552112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaposhnikov, S., Salenko, V., Brunborg, G., et al., Single-cell gel electrophoresis (the comet assay): Loops or fragments?, Electrophoresis, 2008, vol. 29, no. 14, pp. 3005–3012. https://doi.org/10.1002/elps.200700921

    Article  CAS  PubMed  Google Scholar 

  28. Van Bortle, K. and Corces, V., Nuclear organization and genome function, Ann. Rev. Cell Dev. Biol., 2012, vol. 28, pp. 163–187. https://doi.org/10.1146/annurev-cellbio-101011-155824

    Article  CAS  Google Scholar 

  29. Wagner, L. and Lai, E., Separation of large DNA molecules with high voltage pulsed field gel electrophoresis, Electrophoresis, 1994, vol. 15, no. 1, pp. 1078–1083. https://doi.org/10.1002/elps.11501501161

  30. Yáñez-Cuna, J., and van Steensel, B., Genome–nuclear lamina interactions: from cell populations to single cells, Curr. Opin. Genet. Dev., 2017, vol. 43, pp. 67–72. https://doi.org/10.1016/j.gde.2016.12.005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study did not receive any certain grant from financial organs in governmental, commercial, or noncommercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chopei.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopei, M., Olefirenko, V., Afanasieva, K. et al. Inner and Outer DNA Loops in Cell Nuclei: Evidence from Pulsed-Field Comet Assay. Cytol. Genet. 56, 313–318 (2022). https://doi.org/10.3103/S0095452722040028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722040028

Keywords:

Navigation