Skip to main content
Log in

Numerical and Structural Chromosomal Abnormalities Associated with Immunodeficiency

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Recurrent infections in children with chromosome anomalies are associated with some anatomical specificities in their upper respiratory tract and neuromuscular disorders; however, immunological differences may also increase children’s susceptibility to infections. The article analyzes studies dedicated to the immunity status of children with chromosome anomalies. The scientific data were collected from the OMIM, Scopus, and PubMed international databases by the corresponding keywords. Immunological assays diagnosed immunodeficiency in children with syndromes, such as Down, the 22q11.2 deletion, Nijmegen, Louis Bar, Turner, Wolf-Hirschhorn, Jacobsen, CHARGE, and Cornelia de Lange syndromes, which was shown by alterations in cell immunity and hypogammaglobulinemia. The article highlighted the pathogenic mechanisms underlying the onset of immune disorders in children with chromosomal abnormalities. It has been noted that newborn screening assays for severe combined immunodeficiency diagnose T-cell lymphopenia in infants with chromosome anomalies, and, therefore, these children are to be classified as a group at a high risk for developing immunodeficiency. Early diagnosis of chromosomal diseases will help to diagnose the severity of immune disorders, prescribe their timely correction, prevent infectious complications, and improve the quality of life for these children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aghamohammad, A., Moin, M., Kouhi, A., Mohagheghi, M.-A., Shirazi, A., Rezaei, N., and Ghaffari, S.R., Chromosomal radiosensitivity in patients with common variable immunodeficiency, Immunobiology, 2008, vol. 213, no. 5, pp. 447–454. https://doi.org/10.1016/j.imbio.2007.10.018

    Article  CAS  Google Scholar 

  2. Antonarakis, S.E., Skotko, B.G., Rafii, M.S., et al., Down syndrome, Nat. Rev. Dis. Primers, 2020, vol. 6, no. 1, pp. 1–20.

    Article  Google Scholar 

  3. Baker, M.W., Grossman, W.J., Laessig, R.H., et al., Development of a routine newborn screening protocol for severe combined immunodeficiency, J. Allerg. Clin. Immunol., 2009, vol. 124, pp. 522–527.https://doi.org/10.1016/j.jaci.2009.04.007

  4. Barmettler, S., Coffey, K., Smith, M.J., Chong, H.J., Pozos, T.C., Seroogy, C.M., and Abraham, R.S., Functional confirmation of DNA repair defect in ataxia telangiectasia (AT) infants identified by newborn screening for severe combined immunodeficiency (NBS SCID), J. Allerg. Clin. Immun. In Practice, 2020. https://doi.org/10.1016/j.jaip.2020.08.008

  5. Bjurkman, A.D., Van der Burg, Cormier-Daire, V., et al., Reduced immunoglobulin gene diversity in patients with Cornelia de Lange syndrome, J. Allerg. Clin. Immun., 2018, vol. 141, no. 1, pp. 408–411.e8. https://doi.org/10.1016/j.jaci.2017.06.043

    Article  CAS  Google Scholar 

  6. Bloemers, B.L., Broers, C.J., Bont, L., et al., Increased risk of respiratory tract infections in children with Down syndrome: the consequence of an altered immune system, Microb. Infect., 2010, vol. 12, no. 11, pp. 799– 808. https://doi.org/10.1016/j.micinf.2010.05.007

    Article  CAS  Google Scholar 

  7. Boyarchuk, O. and Dmytrash, L., Clinical manifestations in the patients with primary immunodeficiencies: data from one regional center, Turk. J. Immun., 2019, vol. l7, no. 3, pp. 113–119. https://doi.org/10.25002/tji.2019.1168

  8. Boyarchuk, O., Volyanska, L., and Dmytrash, L., Clinical variability of chromosome 22q11.2 deletion syndrome, Centr. Eur. J. Immun., 2017, vol. 42, no. 4, pp. 412–417. https://doi.org/10.5114/ceji.2017.72818

    Article  Google Scholar 

  9. Boyarchuk, O., Volyanska, L., Kosovska, T., Lewandowicz-Uszynska, A., and Kinash, M., Awareness about primary immunodeficiency diseases among medical students, Georg. Med. News, 2018, vol. 12, no. 285, pp. 124–130.

    Google Scholar 

  10. Boyarchuk, O., Balatska, N., and Chornomydz, I., Evaluation of warning signs of primary immunodeficiencies, Pediatria Polska (Pol. J. Paediatr.), 2019a, vol. 94, no. 6, pp. 337–341. https://doi.org/10.5114/polp.2019.92824

  11. Boyarchuk, O., Kinash, M., Hariyan, T., and Bakalyuk, T., Evaluation of knowledge about primary immunodeficiencies among postgraduate medical students, Arch. Balkan Med. Union, 2019b, vol. 54, no. 1, pp. 11–19. https://doi.org/10.31688/ABMU.2019.54/1.18

    Article  Google Scholar 

  12. Boyarchuk, O., Volokha, A., Hariyan, T., et al., The impact of combining educational program with the improving of infrastructure to diagnose on early detection of primary immunodeficiencies in children, Immunol. Res., 2019c, vol. 67, nos. 4–5, pp. 390–397. https://doi.org/10.1007/s12026-019-09103-w

    Article  PubMed  Google Scholar 

  13. Chi, X., Li, Y., and Qiu, X., V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation, Immunology, 2020. https://doi.org/10.1111/imm.13176

  14. Choi, M. and Klingensmith, J., Chordin is a modifier of Tbx1 for the craniofacial malformations of 22q11 deletion syndrome phenotypes in mouse, PLos Genet., 2009, vol. 5, no. 2, pp. 1–8. https://doi.org/10.1371/journal.pgen.1000395

    Article  CAS  Google Scholar 

  15. Cruz, N.V., Mahmoud, S.A., Chen, H., Lowery-Nordberg, M., Berlin, K., and Bahna, S.L., Follow-up study of immune defects in patients with dysmorphic disorders, Ann. Allergy, Asthma Immunol., 2009, vol. 102, no. 5, pp. 426–431. https://doi.org/10.1016/s1081-1206(10)60516-9

    Article  Google Scholar 

  16. Cuadrado, E. and Barrena, M.J., Short analytical review: immune dysfunction in Down›s syndrome: primary immune deficiency or early senescence of the immune system, Clin. Immunol. Immunopathol., 1996, vol. 78, pp. 209–214. https://doi.org/10.1006/clin.1996.0031

    Article  CAS  PubMed  Google Scholar 

  17. Dai, Y., Kysela, B., Hanakahi, L.A., Manolis, K., Riballo, E., Stumm, M., and Jeggo, P.A., Nonhomologous end joining and V(D)J recombination require an additional factor, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 5, pp. 2462– 2467. https://doi.org/10.1073/pnas.0437964100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davey, B.T., Elder, R.W., Cloutier, M.M., Bennett, N., Lee, J.H., Wang, Z., and Toro-Salazar, O.H., T-cell receptor excision circles in newborns with congenital heart disease, J. Pediatr., 2019. https://doi.org/10.1016/j.jpeds.2019.05.061

  19. De Villartay, J.P., Congenital defects in V(D)J recombination, Br. Med. Bull., 2015, vol. 114, no. 1.

  20. Duarte, L., Ardison, M.J., Machado, R.A., et al., Rare case of Wolf–Hirschhorn involving the genes PIGG and PAOX, Braz. J. Surg. Clin. Res., 2020, vol. 30, no. 2), pp. 32–36.

  21. Fechner, P.Y., Turner Syndrome, in Endocrine and Metabolic, Springer, 2020, pp. 157–174. https://doi.org/10.1007/978-3-030-34150-3

    Book  Google Scholar 

  22. Fung, W.L., Butcher, N.J., Costain, G., et al., Practical guidelines for managing adults with 22q11.2 deletion syndrome, Genet. Med., 2015, vol. 17, no. 8, pp. 599–609. https://doi.org/10.1038/gim.2014.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gennery, A.R., Immunological aspects of 22q11.2 deletion syndrome, Cell Mol. Life Sci., 2011, vol. 69, no. 1, pp. 17–27. https://doi.org/10.1007/s00018-011-0842-z

    Article  CAS  PubMed  Google Scholar 

  24. Goldmuntz, E., 22q11.2 deletion syndrome and congenital heart disease, Am. J. Med. Genet. Part C: Semin. Med. Genet., 2020, vol. 184, no. 1, pp. 64–72. https://doi.org/10.1002/ajmg.c.31774

    Article  Google Scholar 

  25. Grossfeld, P.D., Mattina, T., Lai, Z., et al., The 11q terminal deletion disorder: a prospective study of 110 cases, Am. J. Med. Genet. A, 2004, vol. 129, no. 1, pp. 51–61. https://doi.org/10.1002/ajmg.a.30090

    Article  Google Scholar 

  26. Hammond, P., Hutton, T.J., Allanson, J.E., et al., Discriminating power of localized three-dimensional facial morphology, Am. J. Human Genet., 2005, vol. 77, no. 6, pp. 999–1010.https://doi.org/10.1086/498396

    Article  CAS  Google Scholar 

  27. Hanley-Lopez, J., Estabrooks, L.L., and Stiehm, E.R., Antibody deficiencies in Wolf–Hirschhorn syndrome, J. Pediatr., 1998, vol. 133, pp. 141–143.https://doi.org/10.1016/s0022-3476(98)70194-5

  28. Hariyan, T., Kinash, M., Kovalenko, R., and Boyarchuk, O., Evaluation of awareness about primary immunodeficiencies among physicians before and after implementation of the educational program: a longitudinal study, PLoS One, 2020, vol. 15, no. 5, e0233342.https://doi.org/10.1371/journal.pone.0233342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hasbaoui, B.E., Elyajouri, A., Abilkassem, R., and Agadr, A., Nijmegen breakage syndrome: case report and review of literature, Pan. Afr. Med. J., 2020, vol. 35. https://doi.org/10.11604/pamj.2020.35.85.14746

  30. Jyonouchi, S., Orange, J., Sullivan, et al., Immunologic features of Cornelia de Lange syndrome, Pediatrics, 2013, vol. 132, no. 2, pp. 484–489. https://doi.org/10.1542/peds.2012-3815

    Article  Google Scholar 

  31. Karaman, S., Hazan, F., Erdem, S.B., Gelez, N., and Genel, F., Do microdeletions lead to immune deficiency?, Centr.-Eur. J. Immunol., 2020, vol. 45, no. 1, p. 69.https://doi.org/10.5114/ceji.2020.94671

    Article  CAS  Google Scholar 

  32. Kerkel, K., Schupf, N., Hatta, K., et al., Altered DNA methylation in leukocytes with trisomy 21, PLoS Genet., 2010, vol. 6, no. 11, pp. 1–14. https://doi.org/10.1371/journal.pgen.1001212

    Article  CAS  Google Scholar 

  33. Klein SL, Flanagan KL. (2016) Sex differences in immune responses. Nature Reviews Immunol 16(10): 626–638. https://doi.org/10.1038/nri.2016.90

    Article  CAS  Google Scholar 

  34. Kobrynski LJ. (2019). Non-SCID T cell lymphopenia identified at Newborn Screening for Severe Combined Immune Deficiency. Annal Allerg, Asthma Immunol https://doi.org/10.1016/j.anai.2019.08.006

    Book  Google Scholar 

  35. Kong Xiao-Fei, Worley, L., Rinchai, D., et al., Three copies of four interferon receptor genes underlie a mild type I interferonopathy in Down syndrome, J. Clin. Immunol., 2020, pp. 1–13. https://doi.org/10.1007/s10875-020-00803-9

  36. Kozlova, O.I., Kostyuchenko, L.V., Polishchuk, R.S., et al., Non-Hodgkin’s lymphomas in children with chromosome instability syndromes, Oncology, 2011, vol. 13, no. 2, pp. 115–121.

    Google Scholar 

  37. Koonin, E.V. and Krupovic, M., Evolution of adaptive immunity from transposable elements combined with innate immune systems, Nat. Rev. Genet., 2015, vol. 3, pp. 184–192. https://dx.doi.org/10.1038%2Fnrg3859 https://doi.org/10.1038/nrg3859

    Article  CAS  Google Scholar 

  38. Kruszka, P., Addissie, Y.A., Tekendo-Ngongang, C., et al., Turner syndrome in diverse populations, Am. J. Med. Genet. A, 2019, vol. 182, no. 2, pp. 303–313. https://doi.org/10.1002/ajmg.a.61461

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kusters, M.A., Verstegen, R.H., Gemen, E.F., and de Vries, E., Intrinsic defect of the immune system in children with Down syndrome: a review, Clin. Exp. Immunol., 2009, vol. 156, no. 2, pp. 189–193. https://doi.org/10.1111/j.1365-2249.2009.03890.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kutlug, S., Alpaslan, M.K., Hancioglu, G., Ozkan, S.E.O., Yesilirmak, D.C., Bulut, H., and Yildiran, A., Multiplex PCR-based newborn screening for severe T and B-cell lymphopenia: the first pilot study in Turkey, Med. Bull. Sisli Etfal Hospital, 2021.

    Google Scholar 

  41. Kwan, A., Abraham, R.S., Currier, R., et al., Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States, JAMA, 2014, vol. 312, no. 7, p. 729. https://doi.org/10.1001/jama.2014.9132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lavin, M.F. and Yeo, A.J., Clinical potential of ATM inhibitors, in Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2020, p. 111695. doi 10.1016/j.mrfmmm.2020.111695

  43. Lichtner, P., Konig, R., Hasegawa, T., Van Esch, H., Meitinger, T., and Schuffenhauer, S., An HDR (hypo-parathyroidism, deafness, renal dysplasia) syndrome locus maps distal to the DiGeorge syndrome region on 10p13/14, J. Med. Genet., 2000, vol. 37, no. 1, pp. 33–37. https://doi.org/10.1136/jmg.37.1.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, C., Li, X., Cui, J., Dong, R., et al., Analysis of clinical and genetic characteristics in 10 Chinese individuals with Cornelia de Lange syndrome and literature review, Mol. Genet. Genom. Med., 2020. https://doi.org/10.1002/mgg3.1471

    Book  Google Scholar 

  45. Lockstone, H.E., Harris, L.W., Swatton, J.E., Wayland, M.T., Holland, A.J., and Bahn, S., Gene expression profiling in the adult Down syndrome brain, Genomics, 2007, vol. 90, no. 6, pp. 647–660. https://doi.org/10.1016/j.ygeno.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  46. Lorini, R., Ugazio, A.G., Cammareri, V., et al., Immunologic levels, T-cell markers, mitogen responsiveness and thymic hormone activity in Turner’s syndrome, Thymus, 1983, vol. 5, pp. 61–66.

    CAS  PubMed  Google Scholar 

  47. Mahmoud, S.A., Lowery-Nordberg, M., Chen, H., Thurmon, T., Ursin, S., and Bahna, S.L., Immune defects in subjects with dysmorphic disorders, in Allergy and Asthma Proceedings, Ocean-Side Publications, 2005, vol. 26, no. 5, p. 373.

  48. Marsh, R.A. and Lindsley, A.W., Genetic syndromes with associated immunodeficiencies, in Primary and Secondary Immunodeficiency: A Case-Based Guide to Evaluation and Management, 2021, p. 169.

  49. Mauracher, A.A., Pagliarulo, F., Faes, L., et al., Causes of low neonatal T-cell receptor excision circles: a systematic review, J Allerg. Clin. Immun. In Practice, 2017, vol. 5, no. 5, pp. 1457–1460. e22. https://doi.org/10.1016/j.jaip.2017.02.009

  50. McDonald-McGinn, D.M., Sullivan, K.E., Marino, B., et al., 22q11.2 deletion syndrome, Nat. Rev. Dis. Primers, 2015, vol. 1, no. 1, pp. 1–19. https://doi.org/10.1038/nrdp.2015.71

    Article  Google Scholar 

  51. Ming, J.E. and Graham, J.M., Genetic syndromes with evidence of immune deficiency, in Stiehm’s Immune Deficiencies, 2014, pp. 281–324. https://doi.org/10.1016/b978-0-12-405546-9.00012-1

  52. Ming, J.E. and Stiehm, E.R., Genetic syndromic immunodeficiencies with antibody defects, Immunol. Allerg. Clin. North Am., 2008, vol. 28, no. 4, pp. 715–736.

    Article  Google Scholar 

  53. Ming, J.E., Stiehm, E.R., and Graham, J.M., Syndromic immunodeficiencies: genetic syndromes associated with immune abnormalities, Crit. Rev. Clin. Lab. Sci., 2003, vol. 40, no. 6, pp. 587–642. doi 10.1080/714037692

  54. Ming, J.E., Stiehm, E.R., Ming, J.E., and Stiehm, E.R., Syndromic immunodeficiencies, in Primary Immunodeficiency Diseases, 2017, pp. 519–551. https://doi.org/10.1007/978-3-662-52909-6_10

  55. Naspitz, C.K. and Sole, D., Selective deficiency of IgA: infrequent complications, Bol. Med. Hosp. Infant Mex., 1990, vol. 47, pp. 838–840.

    CAS  PubMed  Google Scholar 

  56. Nussbaum, R.L., McInnes, R.R., Williard, H.F., Thompson, J.S., and Thompson, M.W., Genetics in Medicine, Philadelphia, PA: Saunders, 2007.

    Google Scholar 

  57. OMIM, Online Mendelian Inheritance in Man, OMIMt, Baltimore, MD: McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins Univ., 2013. http://omim.org/.

  58. Packham, E.A. and Brook, J.D., T-box genes in human disorders, Hum. Mol. Genet., 2003, vol. 12, no. 1, pp. 37–44. https://doi.org/10.1093/hmg/ddg077

    Article  CAS  Google Scholar 

  59. Patrawala, M. and Kobrynski, L., Nonsevere combined immunodeficiency T-cell lymphopenia identified through newborn screening, Curr. Opin. Allerg. Clin. Immun., 2019, vol. 19, no. 6, pp. 586–593.https://doi.org/10.1097/aci.0000000000000586

  60. Picard, C., Al-Herz, W., Bousfiha, A., et al., Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency, J. Clin. Immunol., 2015, vol. 35, no. 8, pp. 696– 726. https://doi.org/10.1007/s10875-015-0201-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Piliero, L.M., Sanford, A.N., McDonald-McGinn, D.M., Zackai, E.H., Sullivan, K.E., et al., T-cell homeostasis in humans with thymic hypoplasia due to chromosome 22q11.2 deletion syndrome, Blood, 2004, vol. 103, no. 3, pp. 1020–11025. https://doi.org/10.1093/hmg/ddg077

    Article  CAS  PubMed  Google Scholar 

  62. Proudhon, C., Hao, B., Raviram, R., Chaumeil, J., and Skok, J.A., Long-range regulation of V(D)J recombination. Molecular mechanisms that orchestrate the assembly of antigen receptor loci, 2015, pp. 123–182. https://doi.org/10.1016/bs.ai.2015.07.003

  63. Puck, J.M., Neonatal screening for severe combined immunodeficiency, Curr. Opin. Pediatr., 2011, vol. 23, no. 6, pp. 667–673. https://doi.org/10.1097/mop.0b013e32834cb9b0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rae, W., Indications to epigenetic dysfunction in the pathogenesis of common variable immunodeficiency, Arch. Immunol. Ther. Exp., 2016, vol. 65, no. 2, pp. 101–110. https://doi.org/10.1007/s00005-016-0414-x

    Article  CAS  Google Scholar 

  65. Ram Chinen, J., Infections and immunodeficiency in Down syndrome, Clin. Exp. Immunol., 2011, vol. 164, no. 1, pp. 9–16.https://doi.org/10.1111/j.1365-2249.2011.04335.x

    Article  CAS  PubMed  Google Scholar 

  66. Roat, E., Prada, N., Lugli, E., et al., Homeostatic cytokines and expansion of regulatory T cells accompany thymic impairment in children with Down syndrome, Rejuvenation Res., 2008, vol. 11, no. 3, pp. 573–583. https://doi.org/10.1089/rej.2007.0648

    Article  CAS  PubMed  Google Scholar 

  67. Ru, H., Chambers, M.G., Fu, T.-M., Tong, A.B., Liao, M., and Wu, H., Molecular mechanism of V(D)J recombination from synaptic RAG1-RAG2 complex structures, Cell, 2015, vol. 163, no. 5, pp. 1138–1152. doi 10.1016/j.cell.2015.10.055

  68. Ruud, H.J., Borte, S., Bok, L.A., et al., Impact of Down syndrome on the performance of neonatal screening assays for severe primary immunodeficiency diseases, J. Allerg. Clin. Immun., 2014, vol. 133, no. 4, pp. 1208–1211. https://doi.org/10.1016/j.jaci.2013.10.010

    Article  Google Scholar 

  69. Sarogni, P., Pallotta, M.M., and Musio, A., Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach, J. Med. Genet., 2019. jmedgenet–2019–106277. https://doi.org/10.1136/jmedgenet-2019-106277

  70. Schatorjé, E., van der Flier, M., Seppänen, M., Browning, M., Morsheimer, M., Henriet, S., and de Vries, E., Primary immunodeficiency associated with chromosomal aberration—an ESID survey, Orphanet. J. Rare Dis., 2016, vol. 11, no. 1. https://doi.org/10.1186/s13023-016-0492-1

  71. Schatz, D.G. and Swanson, P.C., V(D)J recombination: mechanisms of initiation, Ann. Rev. Gene, 2011, vol. 45, no. 1, pp. 167–202. https://doi.org/10.1146/annurev-genet-110410-132552

    Article  CAS  Google Scholar 

  72. Shcherbina, A. and Porras, O., DNA stability defects, in Stiehm’s Immune Deficiencies, 2020, pp. 281–318. doi 10.1016/b978-0-12-816768-7.00010-7

  73. Stenberg, A.E, Sylvén, L., Magnusson, C.G., and Hultcrantz, M., Immunological parameters in girls with Turner syndrome, J. Negat. Res. BioMed., 2004, vol. 3, no. 1, pp. 268–272. https://doi.org/10.1186/1477-5751-3-6

    Article  Google Scholar 

  74. Swillen, A. and McDonald-McGinn, D., Developmental trajectories in 22q11.2 deletion syndrome, Am. J. Med. Genet. C: Semin. Med. Genet., 2015, vol. 169, no. 2, pp. 172–181. https://doi.org/10.1002/ajmg.c.31435

    Article  CAS  Google Scholar 

  75. Vergaelen, E., Swillen, A., Van Esch, H., et al., 3 generation pedigree with paternal transmission of the 22q11.2 deletion syndrome: intrafamilial phenotypic variability, Eur. J. Med. Genet., 2015, vol. 58, no. 4, pp. 244–248. https://doi.org/10.1016/j.ejmg.2015.01.008

    Article  PubMed  Google Scholar 

  76. Vogel, B.H., Bonagura, V., Weinberg, G.A., et al., Newborn screening for SCID in New York State: experience from the first two years, J. Clin. Immunol., 2014, vol. 34, no. 3, pp. 289–303. https://doi.org/10.1007/s10875-014-0006-7

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wong, M., Lambeck, A., Van der Burg, M., et al., Immune dysfunction in children with CHARGE syndrome: a cross-sectional study, PLoS One, 2015, vol. 10, no. 11, e0142350. https://doi.org/10.1371/journal.pone.0142350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu, Z.H., Phenotypes and genotypes of the chromosomal instability syndromes. Translat. Pediatr., 2016, vol. 5, no. 2, p. 79.

    Article  Google Scholar 

  79. Wu, G.S. and Bassing, C.H., Inefficient V(D)J recombination underlies monogenic T cell receptor β expression, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, no. 31, pp. 18172–18174. https://doi.org/10.1073/pnas.2010077117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yapijakis, C., Angelopoulou, A., Manolakos, E., Voumvourakis, C., et al., Craniofacial and neurological phenotype in a patient with de novo 18q microdeletion and 18p microduplication, Adv. Exp. Med. Biol., Springer, 2020, pp. 163–166. https://doi.org/10.1007/978-3-030-32633-3_22

  81. Yarema, N., Fedortsiv, O., and Palasiuk, B., Influence of w-3 polyunsaturated fatty acids on the structure of immunocompetent cell membranes and the parameters of cellular and humoral immunity in children with rheumatoid arthritis, Fam. Med. Primary Care Rev., 2018, vol. 20, no. 1, pp. 78–82. https://doi.org/10.5114/fmpcr.2018.73707

    Article  Google Scholar 

  82. Yazdani, R., Tavakol, M., Motlagh, A.V., Shafiei, A., Darougar, S., Chavoshzadeh, Z., and Ochs, H.D., Combined immunodeficiencies with associated or syndromic features, in Inborn Errors of Immunity, Academic, 2021, pp. 41–91.

    Google Scholar 

Download references

Funding

The study was supported by the Ministry of Health of Ukraine (Research project—Pilot Newborn Screening Research for Diagnosing Primary Immunodeficiency Using TRECS and KRECa assay).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Yarema, O. R. Boyarchuk, I. B. Chornomydz or Ya. V. Panasiuk.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Tarasyuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarema, N.M., Boyarchuk, O.R., Chornomydz, I.B. et al. Numerical and Structural Chromosomal Abnormalities Associated with Immunodeficiency. Cytol. Genet. 55, 340–349 (2021). https://doi.org/10.3103/S0095452721040137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721040137

Navigation