Skip to main content
Log in

Intraspecific Differentiation in White Mistletoe (Viscum album L.) Using the Analysis of Intron Length Polymorphism of β-Tubulin Genes and the SSR Analysis

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Based on the analysis of intron I length polymorphism of the β-tubulin genes (TBP analysis), differences between two mistletoe subspecies (Viscum album ssp. austriacum (Wiesb.) and V. album ssp. album L.) have been shown. The possibility of using the Tubulin-Based Polymorphism (TBP) analysis for the sexual differentiation in mistletoe plants has also been demonstrated. We were successful in identifying particular white mistletoe genotypes using the simple sequence repeats (SSR) method. Application efficiency was comparatively assessed in both types of DNA markers, and the TBP analysis was shown to be more usable for differentiating between white mistletoe subspecies, whereas the SSR analysis is more suitable for studying genotypic variability within a particular subspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ahmed, Z. and Dutt, H.C., Restriction of Viscum album to few phorophytes in a habitat with diverse type of tree species, Austin. J. Plant. Biol., 2015, vol. 1, no. 2, pp. 101–105.

    Google Scholar 

  2. Barbu, C.O., Impact of white mistletoe (Viscum album ssp. abietis) infection on needles and crown morphology of silver fir (Abies alba Mill.), Not. Bot. Hort. Agrobot., 2012, vol. 40, no. 2, pp. 152–158. https://doi.org/10.15835/nbha4027 906

  3. Bardini, M., Lee, D., Donini, P., et al., Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species, Genome, 2004, vol. 47, pp. 281–291. https://doi.org/10.1139/g03-132

    Article  CAS  PubMed  Google Scholar 

  4. Barney, C.W., Hawksworth, F.G., Geils, B.W., et al., Host of Viscum album, Eur. J. Forest. Pathol., 1998, vol. 28, pp. 187–208. https://doi.org/10.1111/j.1439-0329.1998.tb01249.x

    Article  Google Scholar 

  5. Bilgili, E., Kadir Coskuner, A., and Baysal, I., The distribution of pine mistletoe (Viscum album ssp. austriacum) in Scots pine (Pinus sylvestris) forests: from stand to tree level, Scand. J. Forest Res., 2020, vol. 35, nos. 1–2, pp. 20–28. https://doi.org/10.1080/02827581.2020.1729402

    Article  Google Scholar 

  6. Bilonozhko, Y.u.O., Ponomarenko, L.O., Rabokon, A.M., et al., Distribution of mistletoe (Viscum album L.), which parasitizes different woody plants species, in Kyiv and its genetic characteristics, Factors Experim. Evol. Organisms, 2019, vol. 25, pp. 106–110. https://doi.org/10.7124/FEEO.v25.1148

    Article  Google Scholar 

  7. Bohling, N., Greuter, W., Raus, T., et al., Notes on the Cretan mistletoe, Viscum album subsp. creticum subsp. nova (Loranthaceae/Viscaceae), Israel. J. Plant Sci., 2002, vol 50, pp. 77–84. https://doi.org/10.1560/RRJ4-HU15-8BFM-WAUK

    Article  Google Scholar 

  8. Braglia, L., Gavazzi, F., Giovannini, A., et al., TBP-assisted species and hybrid identification in the genus Passiflora, Mol. Breed., 2014, vol. 33, no. 1, pp. 209–219. https://doi.org/10.1007/s11032-013-9945-6

    Article  CAS  Google Scholar 

  9. Breviario, D., Baird, W.V., Sangoi, S., et al., High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns, Mol. Breed., 2007, vol. 20, no. 3, pp. 249–59. https://doi.org/10.1007/s11032-007-9087-9

    Article  CAS  Google Scholar 

  10. Galasso, I., Manca, A., Braglia, L., et al., h-TBP: an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz., Mol. Breed., vol. 28, pp. 635–645.https://doi.org/10.1007/s11032-010-9515-0

  11. Galkin, S.I., Dragan, N.V., Doyko, N.M., et al., Mistletoe in the relations system of “host–parasite,” Plant Introd., 2017, vol. 3, pp. 71–78. doi 10.5281/zenodo.2325002

  12. Green, M.R. and Sambrook, J., Molecular Cloning: A Laboratory Manual, 4th ed., New York: Cold Spring Harbor Laboratory Press, 2012.

    Google Scholar 

  13. Hillis, D.M. and Bull, J.J., An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis, Syst. Biol., 1993, vol. 42, pp. 182–192.

    Article  Google Scholar 

  14. Kalia, R.K., Rai, M.K., Kalia, S., et al., Microsatellite markers: an overview of the recent progress in plants, Euphytica, 2011, vol. 177, no. 3, pp. 309–334. https://doi.org/10.1007/s10681-010-0286-9

    Article  CAS  Google Scholar 

  15. Kartoolinejad, D., Hosseini, S.M., Mirnia, S.K., et al., The relationship among infection intensity of Viscum album with some ecological parameters of host trees, Int. J. Environ. Res., 2007, vol. 1, no. 2, pp. 143–149.

    Google Scholar 

  16. Kim, B.Y., Park, H.S., Kim, S., et al., Development of microsatellite markers for Viscum coloratum (Santalaceae) and their application to wild populations, Appl. Plant Sci., 2017, vol. 5, no. 1. https://doi.org/10.3732/apps.1600102

  17. Kim, Ch.S., Kim, S.Y., Sun, B.Y., et al., A review of the taxonomic and ecological characteristics of Korean mistletoe types (Viscum, Korthalsella, Loranthus and Taxillus), Korean J. Pl. Taxon, 2013, vol. 43, no. 2, pp. 81–89.https://doi.org/10.11110/kjpt.2013.43.2.81

  18. Kolodziejek, J., Patykowski, J., and Kolodziejek, R., Distribution, frequency and host patterns of European mistletoe (Viscum album subsp. album) in the major city of Lodz, Biologia, 2013, vol. 68, no. 1, pp. 55–64. https://doi.org/10.2478/s11756-012-0128-4

    Article  Google Scholar 

  19. Krasylenko, Y., Sosnovsky, Y., Atamas, N., et al., The European mistletoe (Viscum album L.): distribution, host range, biotic interactions, and management worldwide with special emphasis on Ukraine, Botany, 2020, vol. 98, no. 9. https://doi.org/10.1139/cjb-2020-0037

  20. Mejnartowicz, L., Relationship and genetic diversity of mistletoe (Viscum album L.) subspecies, Acta Soc. Bot. Polon., 2006, vol. 75, no. 1, pp. 39–49. https://doi.org/10.5586/asbp.2006.007

    Article  CAS  Google Scholar 

  21. Milewicz, M. and Sawicki, J., Sex-linked markers in dioecious plants, Plant Omics, 2013, vol. 6, no. 2, pp. 144–149.

    Google Scholar 

  22. Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 5269–5273.

    Article  CAS  Google Scholar 

  23. Pannell, J.R., Plant sex determination, Curr. Biol., 2017, vol. 27, no. 5, pp. 191–197. https://doi.org/10.1016/j.cub.2017.01.052

    Article  CAS  Google Scholar 

  24. Pavlicek, A., Hrda, S., and Flegr, J., FreeTree—freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia, Folia Biol., 1999, vol. 45, pp. 97–99.

    CAS  Google Scholar 

  25. Rabokon, A.N., Pirko, Ya., Demkovych, A., et al., Intron length polymorphism of beta-tubulin genes as an effective instrument for plant genotyping, Mol. Appl. Genet. (Minsk), 2015, vol. 19, pp. 35–44. https://doi.org/10.7124/FEEO.v22.945

    Article  Google Scholar 

  26. Rabokon, A.N., Pirko, Y.a.V., Demkovych, A.Ye., et al., Comparative analysis of the efficiency of intron-length polymorphism of β-tubulin genes and microsatellite loci for flax varieties genotyping, Cytol. Genet., 2018, vol. 52, no. 1, pp. 3–15. https://doi.org/10.3103/S0095452718010115

    Article  Google Scholar 

  27. Rabokon, A., Demkovich, A., Sozinov, A., et al., Intron length polymorphism of β-tubulin genes of Aegilops biuncialis   Vis., Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1031–1039. https://doi.org/10.1002/cbin.10886

    Article  CAS  PubMed  Google Scholar 

  28. Raftoyannis, Y., Radoglou, K., and Bredemeier, M., Effects of mistletoe infestation on the decline and mortality of Abies cephalonica in Greece, Ann. For. Res., 2015, vol. 58, no. 1, pp. 55–65. https://doi.org/10.15287/afr.2015.347

    Article  Google Scholar 

  29. Sanguesa-Barreda, G., Linares, J.C., and Camarero, J.J., Drought and mistletoe reduce growth and water-use efficiency of Scots pine, Forest Ecol. Manage., 2013, vol. 296, pp. 64–73. https://doi.org/10.1016/j.foreco.2013.01.028

    Article  Google Scholar 

  30. Schaller, G., Urech, K., Grazi, G., et al., Viscotoxin composition of the three European subspecies of Viscum album, Planta Med., 1998, vol. 64, pp. 677–678.

    Article  CAS  Google Scholar 

  31. Schink, M. and Mechelke, F., Sex-correlated differences in the protein pattern of Viscum album L. revealed by two-dimensional gel electrophoresis, Na-urwissenschaften, 1989, vol. 76, pp. 29–30.

    Article  CAS  Google Scholar 

  32. Tsopelas, P., Angelopoulos, A., Economou, A., et al., Mistletoe (Viscum album) in the fir forest of Mount Parnis, Greece, Forest Ecol. Manage., 2004, vol. 202, pp. 59–65. https://doi.org/10.1016/j.foreco.2004.06.032

    Article  Google Scholar 

  33. Vieira, M.L., Santini, L., Diniz, A.L., et al., Micro-satellite markers: what they mean and why they are so useful, Genet. Mol. Biol., 2016, vol. 9, no. 3, pp. 312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027

    Article  Google Scholar 

  34. Wei, X., Guo, H., Che, P., et al., The complete chloroplast genome sequence of Viscum coloratum (Viscaceae), a semiparasitic medicinal plant, Mitochondr. DNA, 2019, vol. 4, no. 2, pp. 2904–2905. https://doi.org/10.1080/23802359. 2019.1660923

  35. Zhou, W., Wang, Y., Zhang, G., et al., Molecular sex identification in dioecious Hippophae rhamnoides L. via RAPD and SCAR markers, Molecules, 2018, vol. 23, no. 5, p. 1048. https://doi.org/10.3390/molecules23051048

    Article  CAS  PubMed Central  Google Scholar 

  36. Zuber, D., Biological flora of Central Europe: Viscum album L., Flora, 2004, vol. 199, pp. 181–203.

    Article  Google Scholar 

  37. Zuber, D. and Widmer, A., Genetic evidence for host specificity in the hemi-parasitic Viscum album L. (Viscaceae), Mol. Ecol., 2000, vol. 9, pp. 1069–1073.

    Article  CAS  Google Scholar 

  38. Zuber, D. and Widmer, A., Phylogeography and host race differentiation in the European mistletoe (Viscum album L.), Mol. Ecol., 2009, vol. 18, pp. 1946–1962. https://doi.org/10.1111/j.1365-294X.2009.04168.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported under the approved thematics of the National Academy of Sciences of Ukraine “Population Biology and Genetics of Viscum album L. in Ukraine” (2018–2022), no. 0118U004067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Bilonozhko.

Ethics declarations

The authors declare that they have no conflict of interests.

No animal or human subject participated in the experiments on which this study was based.

Additional information

Translated by N. Tarasyuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilonozhko, Y.O., Rabokon, A.M., Postovoitova, A.S. et al. Intraspecific Differentiation in White Mistletoe (Viscum album L.) Using the Analysis of Intron Length Polymorphism of β-Tubulin Genes and the SSR Analysis. Cytol. Genet. 55, 1–9 (2021). https://doi.org/10.3103/S0095452721010035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721010035

Keywords:

Navigation