Skip to main content
Log in

Molecular Genetic and Cytological Features of Healing in Esophageal Alkaline Burns and When Melanin is Administered

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Expression of the Col2a1 gene involved in collagen synthesis in the blood and esophageal mucus was shown to be reduced in alkaline esophageal burns of the second degree (AEB 2). When melanin was administered, Col2a1 gene expression levels in the blood and esophageal tissues were increased as compared to those in AEB 2. During the histological study, the intensity of deposition of collagen fibers was determined, the esophageal stenosis index was measured, and the effect of melanin on the healing processes was identified: less pronounced formation of collagen fibers in damaged esophagus tissues. It was found that the serum and esophageal mucosa had higher levels of proinflammatory cytokine IL-6 and lower levels of anti-inflammatory cytokine IL-10. At the administration of melanin, we observed normalization of the content of cytokines in comparison with the indicators for AEB 2, which indicates the anti-inflammatory and antifibrotic properties of this substance and suggests the prospect of using melanin as a substance that contributes to the healing of chemically induced esophageal burns without the formation of pathological scars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Digtyar, V.A, Barsuk, O.M., Kaminska, M.O., Glad-kyi, O.P., and Galagan, A.A., Treatment of chemical burns of the esophagus in children, Paediatr. Surg., 2017, vol. 3 (56), no. 3, pp. 54–56. https://doi.org/10.1016/j.legalmed.2013.10.00210.15574/PS.2017.56.54

  2. Dash, S., Bhojani, J., and Sharma, S., A rare case of anal and perianal chemical burn in a child due to potassium permanganate crystals drug, Saf. Case Rep., 2018, vol. 5, pp. 10–15.https://doi.org/10.1016/j.legalmed.2013.10.002:10.1007/s40800-018-0072-5

    Article  Google Scholar 

  3. Nakajima, Y., Nakano, Y., Fuwano, S., Hayashi, N., Hiratoko, Y., Kinoshita, A., Miyahara, M., Mochizuki, T., Nishino, K., Tsuruhara, Y., Yokokawa, Y., Iuchi, T., Kon, Y., Mukai, K., Kitayama, Y., Murakado, N., Okuwa, M., and Nakatani, T., Effects of three types of Japanese honey on full-thickness wound in mice, Evid.-Based Complement. Altern. Med., 2013, vol. 2013, p. 504 537.https://doi.org/10.1155/2013/504537

  4. Neub, A., Houdek, P., Ohnemus, U., Moll, I., and Brandner, J.M., Biphasic regulation of AP-1 subunits during human epidermal wound healing, J. Invest. Dermatol., 2007, vol. 127, no. 10, pp. 2453–2462.

    Article  CAS  Google Scholar 

  5. Al-Waili, N.S., Salom, K., and Al-Ghamdi, A.A., Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice, Sci. World J., 2011, vol. 11, pp. 766–787.https://doi.org/10.1100/tsw.2011.78 https://doi.org/10.1016/j.legalmed.2013.10.002

  6. Nayak, B.S. and Pinto Pereira, L.M., Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats, BMC Compl. Altern. Med., 2006, vol. 6, p. 41. https://doi.org/10.1186/1472-6882-6-41

    Article  CAS  Google Scholar 

  7. Rawat, S. and Gupta, A., Development and study of wound healing activity of an ayurvedic formulation, Asian J. Pharmac. Sci., 2011, vol. 1, no. 1, pp. 26–28.

    Google Scholar 

  8. Reinke, J.M. and Sorg, H., Wound repair and regeneration, Eur. Surg. Res., 2012, vol. 49, pp. 35–43. https://doi.org/10.1159/000339613

    Article  CAS  PubMed  Google Scholar 

  9. Werner, S., Krieg, T., and Smola, H., Keratinocyte-fibroblast interactions in wound healing, J. Invest. Dermatol., 2007, vol. 127, pp. 998–1008. https://doi.org/10.1038/sj.jid.5700786

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, L., Xiao, X., Li, S., Jia, X., Wang, P., Sun, W., Zhang, F., Li, J., Li, T., and Zhang, Q., Phenotypic characterization of patients with early-onset high myopia due to mutations in COL2A1 or COL11A1: why not Stickler syndrome?, Mol. Vis., 2018, vol. 24, pp. 560–573. PMID: 30181686

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dikaiakou, E., Vlachopapadopoulou, E.A., and Manolakos, E., Identification of an autosomal dominant mutation in the COL2A1 gene leading to spondyloepiphyseal dysplasia congenita in a Greek family, Mol. Syndromol., 2019, vol. 9, no. 5, pp. 241–246. https://doi.org/10.1159/000492190

    Article  CAS  Google Scholar 

  12. Abaev, Yu.K., The biology of healing acute and chronic wounds, Med. News, 2003, vol. 6, pp. 3–10.

    Google Scholar 

  13. Widgerow, A.D., Cellular/extracellular matrix cross talk in scar evolution and control, Wound Repair Regen., 2011, vol. 19, no. 2, pp. 117–133. https://doi.org/10.1111/j.1524-475X.2010.00662.x

    Article  PubMed  Google Scholar 

  14. Salih, E., Afaf, K., and Mohamed Anwar, K., Pharmacological properties of melanin and its function in health, Basic Clin. Pharmacol. Toxicol., 2017, vol. 120, no. 6, pp. 515–522. https://doi.org/10.1111/bcpt.12748

    Article  CAS  Google Scholar 

  15. Kunwar, A., Adhikary, B., Jayakumar, S., and Barik, A., Melanin, a promising radioprotector: mechanisms of actions in a mice model, Toxicol. Appl. Pharmacol., 2012, vol. 264, pp. 202–211. https://doi.org/10.1016/j.taap.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  16. Brenner, M. and Hearling, V.G., The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 2008, vol. 84, no. 3, pp. 539–549. https://doi.org/10.1111/j.1751-1097.2007.00226.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeng-Yu, Y. and Jian-Hua, Q., Comparison of antioxidant activities of melanin fractions from chestnut shell, Molecules, 2016, vol. 21, p. 487. https://doi.org/10.3390/molecules21040487

    Article  CAS  Google Scholar 

  18. Keypour, S., Riahi, H., Moradali, M., and Rafati, H., Investigation of the antibacterial activity of a chloroform extract of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), from Iran, Int. J. Med. Mushrooms, 2008, vol. 10, no. 4, pp. 345–349. https://doi.org/10.1615/IntJMedMushr.v10.i4.70

    Article  Google Scholar 

  19. Racca, S., Spaccamiglio, A., Esculapio, P., Abba-dessa, G., Cangemi, L., DiCarlo, F., et al., Effects of swim stress and alpha-MSH acute pre-treatment on brain 5-HT transporter and corticosterone receptor, Pharmacol. Biochem. Behav., 2005, vol. 81, no. 4, pp. 894–900. https://doi.org/10.1016/j.pbb.2005.06.014

    Article  CAS  PubMed  Google Scholar 

  20. Chornenka, N.M., Raetska, Ya.B., Savchuk, O.M., Kompanets, I.V., Beregova, T.V., and Ostapchenko, L.I., Effect of different doses of melanin in the blood protein changes in rats under alkaline esophageal burns, Res. J. Pharm., Biol. Chem. Sci., 2017, vol. 8, no. 1, p. 261.

    CAS  Google Scholar 

  21. Seniuk, O., Gorovoj, L., and Kovalev, V., Anti-cancerogenic properties of melaninglucan complex from higher fungi, in Proc. 5th Int. Med. Mushroom Conf., Nantong, 2009, pp. 142–149. https://doi.org/10.1615/IntJMedMushr.v13.i1.20

  22. Carletti, G., Nervo, G., and Cattivelli, L., Flavonoids and melanins: a common strategy across two kingdoms, Int. J. Biol. Sci., 2014, vol. 10, no. 10, pp. 1159–1170. https://doi.org/10.7150/ijbs.9672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raetska, Ya.B., Ishchuk, T.V., Savchuk, O.M., and Ostapchenko, L.I., Experimental modeling of first-degree chemically-induced esophageal burns in rats, Med. Chem., 2013, vol. 15, no. 4, pp. 30–34.

    Google Scholar 

  24. Chyzhanska, N.V., Tsyryuk, O.I., and Beregova, T.V., The level of cortisol in the blood of rats before and after stress action against the background of melanin, Visn. Problem. Boil. Med., 2007, vol. 1, pp. 40–44.

    Google Scholar 

  25. Mishra, N.S., Wanjari, S.P., Parwani, R.N., Wanjari, P.V., and Kaothalker, S.P., Assessment of collagen and elastic fibres in various stages of oral submucous fibrosis using Masson’s trichrome, Verhoeff vangieson and picrosirius staining under light and polarizing microscopy, J. Dent. Spec., 2015, vol. 3, no. 2, pp. 170–175. https://doi.org/10.5958/2393-9834.2015.00009.1

    Article  Google Scholar 

  26. Cerit, K.K., Halofuginone improves caustic-induced oxidative injury of esophagus in rats, Esophagus, 2018, vol. 15, no. 2, pp. 59–68. https://doi.org/10.1007/s10388-017-0594-4

    Article  PubMed  Google Scholar 

  27. Crowther, J.R., The ELISA Guidebook, Crowther: Humana Press, 2001. https://doi.org/10.1007/978-1-60327-254-4

  28. Ozog, D.M., Liu, A., and Chaffins, M.L., Evaluation of clinical results, histological architecture, and collagen expression following treatment of mature burn scars with a fractional carbon dioxide laser, JAMA Dermatol., 2013, vol. 149, no. 1, pp. 50–57. https://doi.org/10.1001/2013

    Article  PubMed  Google Scholar 

  29. Tejiram, S., Zhang, J., Travis, T.E., et al., Compression therapy affects collagen type balance in hypertrophic scar, J. Surg. Res., 2016, vol. 201, no. 2, pp. 299–305. https://doi.org/10.1016/j.jss.2015.10.040

    Article  PubMed  Google Scholar 

  30. Ryu, H.H., Caustic injury: can CT grading system enable prediction of esophageal stricture?, Clin. Toxicol., 2010, vol. 48, no. 2, pp. 137–142. https://doi.org/10.3109/15563650903585929

    Article  Google Scholar 

  31. Bozza, M.T., The role of MIF on eosinophil biology and eosinophilic inflammation, Clin. Rev. Aller. Immunol., 2019, pp. 1–10. https://doi.org/10.1007/s12016-019-08726-z

    Book  Google Scholar 

  32. Muir, A.B., Wang, J.X., and Nakagawa, H., Epithelial-stromal crosstalk and fibrosis in eosinophilic esophagitis, J. Gastroenterol., 2019, pp. 1–9. https://doi.org/10.1007/s00535-018-1498-3

  33. Keane, T.J., Horejs, C.M., and Stevens, M.M., Scarring vs. functional healing: matrix-based strategies to regulate tissue repair, Adv. Drug Deliv. Rev., 2018, vol. 129, pp. 407–419. https://doi.org/10.1016/j.addr.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Komaki, Y., Hepatocyte growth factor facilitates esophageal mucosal repair and inhibits the submucosal fibrosis in a rat model of esophageal ulcer, Digestion, 2018, pp. 1–12. https://doi.org/10.1159/000491876

  35. Belardelli, F., Role of interferons and other cytokines in the regulation of the immune response, APMIS, 1995, vol. 103, no. 3, pp. 161–179.

    Article  CAS  Google Scholar 

  36. Zhou, J., Tu, J.J., and Huangetal, Y., Changes in serum contents of interleukin-6 and interleukin-10 and their relation with occurrence of sepsis and prognosis of severely burned patients, Zhonghua Shao Shang Za Zhi, 2012, vol. 28, no. 2, pp. 111–115.

    PubMed  Google Scholar 

  37. Pileri, D., Palombo, A.A., D’Amelio, L., D’Arpa, N., Amato, G., Masellis, A., Cataldo, V., Mogavero, R., Napoli, B., Lombardo, C., and Conte, C., Concentrations of cytokines 2L-6 and 2L-10 in plasma of burn patients: their relationship to sepsis and outcome, Ann. Burns Fire Disasters, 2008, vol. 21, no. 4, pp. 182–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chornenka, N.M., Raetska, Ya.B., Savchuk, O.M., Koval, T.V., Beregova, T.V., and Ostapchenko, L.I., Cytokine profile indicators in rat blood serum in a model of esophagus burn induced by antioxidant chemical preparation, Biomed. Res. Ther., 2017, vol. 4, no. 9, pp. 1591–1606. https://doi.org/10.15419/bmrat.v4i9.367

    Article  Google Scholar 

  39. Kubo, H., Hayashi, T., Ago, K., Ago, M., Kanekura, T., and Ogata, M., Temporal expression of wound healing-related genes in skin burn injury, Leg. Med. (Tokyo), 2014, vol. 16, no. 1, pp. 8–13. https://doi.org/10.1016/j.legalmed.2013.10.002

    Article  CAS  Google Scholar 

Download references

Funding

This study did not receive any specific grant from funding institutions in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chornenka.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. In this work, we adhered to the general ethical principles for animal experiments as approved by the First National Congress of Ukraine on Bioethics (September 2001) and in compliance with the international principles of the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes and other international agreements and national legislation in this area.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chornenka, N.M., Raetska, Y.B., Dranitsina, A.S. et al. Molecular Genetic and Cytological Features of Healing in Esophageal Alkaline Burns and When Melanin is Administered. Cytol. Genet. 54, 333–340 (2020). https://doi.org/10.3103/S0095452720040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720040027

Keywords:

Navigation