Skip to main content
Log in

Expression of Nos2 and Acan Genes in Rat Knee Articular Cartilage in Osteoarthritis

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Degenerative changes in the cartilage tissue of rats with sodium monoiodoacetate-induced osteoarthritis were detected during this histological study and the effect was evaluated of chondroitin sulfate and a multiprobiotic preparation on the healing process, such as the absence, due to the coadministration of these preparations, of postnecrotic changes in the cartilage surface and its replacement by fibrous elements. A molecular analysis of the cartilage tissue sampled from rats with experimental osteoarthritis has equally shown an increase in the Nos2 gene expression and a decrease in the Acan gene expression compared with the control group of animals, which indicates the activation of inflammatory and destructive processes in the tissue. Due to the coadministration of chondroitin sulfate and the multiprobiotic in the same conditions, the expression pattern of the Nos2 and Acan genes returned to the control values, which indicated the clinical prospects for the multiprobiotic as a substance able to enhance the anti-inflammatory and antioxidant action of this chondroprotector in osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig 3.
Fig 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Dranitsina, A.S., Dvorshchenko, K.O., Grebinyk, D.M., and Ostapchenko, L.I., The impact of oxidative stress on Par2, Ptgs2 genes expression in rat duodenal epithelial cells under conditions of prolonged gastric hypochlorhydria and with administration of multiprobiotic, J. Appl. Pharmac. Sci., 2016, vol. 6, no. 12, pp. 162–169. https://doi.org/10.7324/JAPS.2016.601223

    Article  CAS  Google Scholar 

  2. Abdollahi-Roodsaz, S., Abramson, S.B., and Scher, J.U., The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions, Nat. Rev. Rheumatol., 2016, vol. 12, pp. 446–455. https://doi.org/10.1038/nrrheum.2016.68

    Article  CAS  PubMed  Google Scholar 

  3. Löfgren, M., Svala, E., Lindahl, A., Skiöldebrand, E., and Ekman, S., Time-dependent changes in gene expression induced in vitro by interleukin-1β in equine articular cartilage, Res. Vet. Sci., 2018, vol. 118, pp. 466–476. https://doi.org/10.1016/j.rvsc.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  4. Christiansen, B.A., Bhatti, S., Goudarzi, R., and Emami, S., Management of osteoarthritis with avocado/ soybean unsaponifiables, Cartilage, 2015, vol. 6, no. 1, pp. 30–44. https://doi.org/10.1177/1947603514554992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Musumeci, G., Aiello, F.C., Szychlinska, M.A., Di Rosa, M., Castrogiovanni, P., and Mobasheri, A., Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression, Int. J. Mol. Sci., 2015, vol. 16, no. 3, pp. 6093–6112. https://doi.org/10.3390/ijms16036093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bay-Jensen, A.C., Byrjalsen, I., Bihlet, A., Musa, K., Riis, B.J., Christiansen, C., and Karsdal, M.A., Segregating OA patients with and without joint inflammation using two biomarkers of connective tissue inflammation, Osteoarthritis Cartilage, 2015, vol. 23, pp. 88–89. https://doi.org/10.1016/j.joca.2015.02.795

    Article  Google Scholar 

  7. Lepetsos, P. and Papavassiliou, A.G., ROS/oxidative stress signaling in osteoarthritis, Biochim. Biophys. Acta,Mol. Basis Dis., 2016, vol. 1862, no. 4, pp. 576–591. https://doi.org/10.1016/j.bbadis.2016.01.003

    Article  CAS  Google Scholar 

  8. Stöve, J., Gerlach, C., Huch, K., Günther, K.P., Brenner, R., Puhl, W., and Scharf, H.P., Gene expression of stromelysin and aggrecan in osteoarthritic cartilage, Pathobiology, 2001, vol. 69, no. 6, pp. 333–338. https://doi.org/10.1159/000064641

    Article  PubMed  Google Scholar 

  9. Cancel, M., Grimard, G., Thuillard-Crisinel, D., Moldovan, F., and Villemure, I., Effects of in vivo sttic compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix, Bone, 2009, vol. 44, no. 2, pp. 306–315. https://doi.org/10.1016/j.bone.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  10. Xu, H.G., Zheng, Q., Song, J.X., Li, J., Wang, H., Liu, P., Wang, J., Wang, C.D., and Zhang, X.L., Intermittent cyclic mechanical tension promotes endplate cartilage degeneration via canonical Wnt signaling pathway and E-cadherin/β-catenin complex cross-talk, Osteoarthritis Cartilage, 2016, vol. 24, no. 1, pp. 158–168. https://doi.org/10.1016/j.joca.2015.07.019

    Article  PubMed  Google Scholar 

  11. Hochberg, M.C., Martel-Pelletier, J., Monfort, J., Möller, I., Castillo, J.R., Arden, N., Berenbaum, F., Blanco, F.J., Conaghan, P.G., Domenech, G., and Henrotin, Y., Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib, Annal. Rheumat. Dis., vol. 75, no. 1, pp. 37–44. https://doi.org/10.1136/annrheumdis-2014-206792

    Article  Google Scholar 

  12. Gallagher, B., Tjoumakaris, F.P., Harwood, M.I., Good, R.P., Ciccotti, M.G., and Freedman, K.B., Chondroprotection and the prevention of osteoarthritis progression of the knee: a systematic review of treatment agents, Am. J. Sports Med., vol. 43, no. 3, pp. 734–744. https://doi.org/10.1177/0363546514533777

    Article  Google Scholar 

  13. Volpi, N., Quality of different chondroitin sulfate preparations in relation to their therapeutic activity, J. Pharm. Pharmacol., 2009, vol. 61, no. 10, pp. 1271–1280. https://doi.org/10.1211/jpp.61.10.0002

    Article  CAS  PubMed  Google Scholar 

  14. Basu, A., Kunduru, K.R., Abtew, E., and Domb, A.J., Polysaccharide-based conjugates for biomedical applications, Bioconjugate Chem., 2015, vol. 26, no. 8, pp. 1396–1412. https://doi.org/10.1021/acs.bioconjchem.5b00242

    Article  CAS  Google Scholar 

  15. Henrotin, Y., Marty, M., and Mobasheri, A., What is the current status of chondroitin sulfate and glucosamine for the treatment of knee osteoarthritis? Maturitas, 2014, vol. 78, no. 3, pp. 184–187. https://doi.org/10.1016/j.maturitas.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  16. Largo, R., Roman-Blas, J.A., and Moreno-Rubio, J., Chondroitin sulfate improves synovitis in rabbits with chronic antigen-induced arthritis, Osteoarthritis Cartilage, 2010, vol. 18, no. 1, pp. 17–23. https://doi.org/10.1016/j.joca.2010.01.017i

    Article  Google Scholar 

  17. Liu, F., Zhang, N., Li, Z., Wang, X., Shi, H., Xue, C., Li, R.W., and Tang, Q., Chondroitin sulfate disaccharides modified the structure and function of the murine gut microbiome under healthy and stressed conditions, Sci. Rep., 2017, vol. 7, no. 1, pp. 67–83. https://doi.org/10.1038/s41598-017-05860-6

    Article  CAS  Google Scholar 

  18. Janssen, A.W. and Kersten, S., The role of the gut microbiota in metabolic health, FASEB J., 2015, vol. 29, no. 8, pp. 3111–3123. https://doi.org/10.1096/fj.14-269514

    Article  CAS  PubMed  Google Scholar 

  19. Lei, M., Guo, C., Wang, D., Zhang, C., and Hua, L., The effect of probiotic Lactobacillus casei Shirota on knee osteoarthritis: a randomised double-blind, placebo-controlled clinical trial, Benefic.Microbiol., 2017, vol. 8, no. 5, pp. 697–703. https://doi.org/10.3920/BM-2016.0207

    Article  CAS  Google Scholar 

  20. Vitetta, L., Coulson, S., Linnane, A.W., and Butt, H., The gastrointestinal microbiome and musculoskeletal diseases: a beneficial role for probiotics and prebiotics, Pathogens, 2013, vol. 2, no. 4, pp. 606–626. https://doi.org/10.3390/pathogens2040606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steves, C.J., Bird, S., Williams, F.M., and Spector, T.D., The microbiome and musculoskeletal conditions of aging: a review of evidence for impact and potential therapeutics, J. Bone Mineral Res., 2016, vol. 31, no. 2, pp. 261–269. https://doi.org/10.1002/jbmr.2765

    Article  Google Scholar 

  22. Iankovsky, D., Shirobokov, V., and Dyment, G., Microbiome, Kyiv: BC-Book, 2017.

    Google Scholar 

  23. Jacobs, B.Y., Dunnigan, K., Pires-Fernandes, M., and Allen, K.D., Unique spatiotemporal and dynamic gait compensations in the rat monoiodoacetate injection and medial meniscus transection models of knee osteoarthritis, Osteoarthritis Cartilage, 2017, vol. 25, no. 5, pp. 750–8.

    Article  CAS  Google Scholar 

  24. Lily, R., Histopathological Technique and Practical Histochemistry, Moscow: Mir, 1969.

  25. Chomczynski, P. and Sacchi, N., The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on, Nat. Protoc., 2006, vol. 1, no. 2, pp. 581–585. https://doi.org/10.1038/nprot.2006.83

    Article  CAS  PubMed  Google Scholar 

  26. Livak, E.J. and Schmittgen, T.D., Analysis of relative gene expression data using real time quantitative PCR and the 2–ΔΔCt method, Methods, 2001, vol. 25, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  27. Kozhemyakina, E., Lassar, A.B., and Zelzer, E., A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation, Development, 2015, vol. 142, no. 5, pp. 817–831. https://doi.org/10.1242/dev.105536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dranitsina, A.S., Dvorshchenko, K.O., Korotkiy, A.G., Grebinyk, D.M., and Ostapchenko, L.I., Expression of Ptgs2 and Tgfb1 genes in rat cartilage cells of the knee under conditions of osteoarthritis, Cytol. Genet., 2018, vol. 52, no. 3, pp. 192–197. https://doi.org/10.3103/S0095452718030039

    Article  Google Scholar 

  29. Kamata, H. and Hirata, H., Redox regulation of cellular signalling, Cell. Signal., 1999, vol. 11, pp. 1–14. https://doi.org/10.1016/S0898-6568(98)00037-0

    Article  CAS  PubMed  Google Scholar 

  30. Robinson, W.H., Lepus, C.M., Wang, Q., Raghu, H., Mao, R., Lindstrom, T.M., and Sokolove, J., Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis, Nat. Rev. Rheumatol., 2016, vol. 12, no. 10, pp. 580–592. https://doi.org/10.1038/nrrheum.2016.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan, P.S., Caron, J.P., Rosa, G.J., and Orth, M.W., Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E(2) in articular cartilage explants, Osteoarthritis Cartilage, 2005, vol. 13, no. 5, pp. 387–394. https://doi.org/10.1016/j.joca.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  32. Stabler, T.V., Huang, Z., Montell, E., Verges, J., and Kraus, V.B., Chondroitin sulphate inhibits NF-ĸB activity induced by interaction of pathogenic and damage associated molecules, Osteoarthritis Cartilage, 2017, vol. 25, no. 1, pp.166–174. https://doi.org/10.1016/j.joca.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  33. Shang, Q., Shi, J., Song, G., Zhang, M., Cai, C., Hao, J., Li, G., and Yu, G., Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide, Int. J. Biol. Macromol., 2016, vol. 89, pp. 489–498.

    Article  CAS  Google Scholar 

  34. Opoka-Winiarska, V., Jurecka, A., Emeryk, A., and Tylki-Szymanska, A., Osteoimmunology in mucopolysaccharidoses type I, II, VI and VII. Immunological regulation of the osteoarticular system in the course of metabolic inflammation, Osteoarthritis Cartilage, 2013, vol. 21, pp. 1813–1823. https://doi.org/10.1016/j.joca.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  35. Amdekar, S., Singh, V., Kumar, A., Sharma, P., and Singh, R., Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats, J. Interfer. Cytok. Res., 2013, vol. 33, no. 1, pp. 1–8. https://doi.org/10.1089/jir.2012.0034

    Article  CAS  Google Scholar 

  36. Dranitsina, A.S., Savko, U.V., Dvorshchenko, K.O., and Ostapchenko, L.I., Expression of Gast, Cckbr, Reg1a genes in rat duodenal epithelial cells upon long-term gastric hypoacidity and with administration of multiprobiotic, Biopol. Cell, 2014, vol. 30, no. 5, pp. 365–371. https://doi.org/10.7124/bc.0008B3

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The general ethical norms for carrying out experiments in animals (according to the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes, the First National Congress of Bioethics (Ukraine, September 2001), and the Meeting of the Commission for Problems of Bioethics, the National Scientific Center–Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv (protocol no. 3, September 25, 2017)) were observed during our studies in animals.

Funding

This study was not supported by any financial sources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Dranitsina or A. A. Vovk.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Tarasyuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dranitsina, A.S., Dvorshchenko, K.O., Korotkyi, O.H. et al. Expression of Nos2 and Acan Genes in Rat Knee Articular Cartilage in Osteoarthritis. Cytol. Genet. 53, 481–488 (2019). https://doi.org/10.3103/S0095452719060021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719060021

Keywords:

Navigation