Skip to main content
Log in

Constitutional and Induced Accumulation of Callose and Phenol Compounds as Elements of Systemic Resistance in Winter Wheat Sprouts

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The amounts of accumulated callose and phenol compounds in sprouts of two winter wheat cultivars under inoculation with pathogenic fungus Pseudocercosporella herpotrichoides, the causing agent of wheat eyespot, were determined. Considerable differences were demonstrated in the constitutional and induced accumulation of phytoimmunity substances by the sprouts of the Myronivska 808 and Renan cultivars, which cause specific features of their resistance to pathogenic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hatfield, J.L. and Prueger, J.H., Temperature extremes: effect on plant growth and development, Weather Climate Extremes, 2015, vol. 10, pp. 4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  2. Tasmina, T., Khan, A.R., Karim, A., Akter, N., and Islam, R., Physiological changes of wheat varieties under water deficit condition, Bangladesh Agron. J., 2016, vol. 2, no. 19, pp. 105–114. https://doi.org/10.3329/bjsr.v29i2.32333

    Article  Google Scholar 

  3. Titov, A., Kasina, N., and Talanova, V., Plant Resistance to Cadmium, Petrozavodsk: Proceedings of the Karelian Scientific Center RAS, 2012.

  4. Savary, S., Ficke, A., Aubertot, J.N., and Hollier, C.A., Crop losses due to diseases and their implications for global food production losses and food security, Food Security, 2012, vol. 4, no. 4, pp. 519–537. https://doi.org/10.1007/s12571-012-0200-5

    Article  Google Scholar 

  5. Nedukha, O.M., Callose: localization, functions, and synthesis in plant cells, Cytol. Genet., 2015, vol. 49, no. 1, pp. 49–57. https://doi.org/10.3103/S009545-2715010090

    Article  Google Scholar 

  6. Zhu, J.K., Abiotic stress signaling and responses in plants, Cell, 2016, vol. 2, no. 167, pp. 313–324. https://doi.org/10.1016/J.CELL.2016.08.029

    Article  Google Scholar 

  7. Ponce, De., Leon, I., and Montesano, M., Activation of defense mechanisms against pathogens in mosses and flowering plants, Int. J. Mol. Sci., 2013, vol. 2, no. 14, pp. 3178–3200. https://doi.org/10.3390/ijms14023178

    Article  CAS  Google Scholar 

  8. Wei, L., Advances and prospects in wheat eyespot research: contribution from genetics and molecular tools, J. Phytopathol., 2011, vol. 7, no. 8, pp. 235–243.

    Google Scholar 

  9. McIntosh, R.A., Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat, Plant Pathol., 1992, vol. 41, no. 5, pp. 523–527.

    Article  Google Scholar 

  10. McIntosh, R.A. and Brown, G.N., Anticipatory breeding for resistance to rust diseases in wheat, Annu. Rev. Phytopathol., 1997, vol. 35, pp. 311–326.

    Article  CAS  Google Scholar 

  11. Sibikeev, S.N. and Druzhin, A.E., Prebreeding research of near-isogenic lines of spring bread wheat with a combination of translocations from Agropyron elongatum (Host.) P.B. and Aegilops ventricosa Tausch, Vavilov J. Genet. Breed., 2015, vol. 19, no. 3, pp. 310–315. https://doi.org/10.18699/VJ15.040

    Article  Google Scholar 

  12. Dumalasová, V., Palicová, J., Hanzalová, A., Bížová, I., and Leišová-Svobodová, L., Eyespot resistance gene Pch1 and methods of study of its effectiveness in wheat cultivars, Czech. J. Genet. Plant Breed., 2015, vol. 4, no. 5, pp. 166–173. https://doi.org/10.17221/157/2015-CJGPB

    Article  Google Scholar 

  13. Cook, D.E., Mesarich, C.H., and Thomma, B.P., Understanding plant immunity as a surveillance system to detect invasion, Annu. Rev. Phytopathol., 2015, no. 53, pp. 541–563. https://doi.org/10.1146/annurev-phyto-080614-120114

    Article  CAS  Google Scholar 

  14. Ray, R.V., Crook, M., Jenkinson, P., and Edwards, S., Effect of eyespot caused by Oculimacula yallundae and O. acuformis, assessed visually and by competitive PCR, on stem strength associated with lodging resistance and yield of winter wheat, J. Exp. Bot., 2006, vol. 10, no. 57, pp. 2249–2257. ISSN: 0022-0957.

    Article  CAS  Google Scholar 

  15. Blein, M., Levrel, A., Gautier, V., Muranty, H., and Barloy, D., The specific effects of the pch1 resistance gene on the development of Oculimacula yallundae, the causing agent of wheat eyespot, Options Méditerranéennes, 2015, no. 81, pp. 159–162.

  16. Hanzalová, A., Dumalasová, V., Tsumíková, T., and Bartoš, P., Rust resistance of the French wheat cultivar Renan, Czech J. Genet. Plant Breed., 2007, vol. 2, no. 43, pp. 53–60. https://doi.org/10.17221/1912-CJGPB

    Article  Google Scholar 

  17. Boboshko, O.P., Panyuta, O.O., Artemenko, O.Y., Emelyanov, V.I., and Taran, N.Y., Time-course of pathogen induced accumulation of callose as mechanical protective barrier in wheat seedlings, Cytol. Genet., 2017, vol. 51, no. 1, pp. 26–31. https://doi.org/10.3103/S0095-452717010029

    Article  Google Scholar 

  18. Smirnova, O.G. and Kochetov, A.V., Plant cell wall and mechanisms of resistance to pathogens, Russ. J. Genet. Appl. Res., 2016, vol. 6, no. 5, pp. 622–31. https://doi.org/10.18699/VJ15.109

    Article  CAS  Google Scholar 

  19. Doughari, J.H., An overview of plant immunity, J. Plant Pathol. Microbiol., 2015, vol. 6, no. 322, pp. 1–11. https://doi.org/10.4172/2157-7471.1000321

    Article  CAS  Google Scholar 

  20. Malinovsky, F.G., Fangel, J.U., and Willats, W.G., The role of the cell wall in plant immunity, Front. Plant Sci., 2014, vol. 5, no. 178, pp. 1–12. https://doi.org/10.3389/fpls.2014.00178

    Article  Google Scholar 

  21. Underwood, W., The plant cell wall: a dynamic barrier against pathogen invasion, Front. Plant Sci., 2012, vol. 3, no. 85. https://doi.org/10.3389/fpls.2012.00085

  22. Cle, C., Hill, L.M., Niggeweg, R., Martin, C.R., Guisez, Y., Prinsen, E., and Jansen, M.A.K., Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance, Phytochemistry, 2008, vol. 69, no. 11, pp. 2149–56.

    Article  CAS  Google Scholar 

  23. Prigogine, I. and Kondepudi, D., Modern Thermodynamics. From Heat Engines to Dissipative Structures, Moscow: Mir, 2002.

  24. McLusky, S.R., Bennett, M.H., Beale, M.H., Lewis, M.J., Gaskin, P., and Mansfield, J.W., Cell wall alterations and localized accumulation of feruloyl-30-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis, Plant J., 1999, vol. 17, no. 5, pp. 523–534.

    Article  CAS  Google Scholar 

  25. Zeyen, R.J., Carver, T.L.W., and Lyngkjr, M.F., Epidermal cell papillae, in The Powdery Mildews: A Comprehensive Treatise, MN, USA: APS Press, 2002.

    Google Scholar 

  26. Ferrazzano, G.F., Amato, I., Ingenito, A., Natale, DeA., and Pollio, A., Anti-carcinogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea), Fitoterapia, 2009, vol. 80, no. 20, pp. 255–262. https://doi.org/10.1016/j.fitote.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  27. Emelyanov, V.I., Kravchuk, J.N., Poliakovskiy, S.O., and Dmitriev, O.P., Callose deposition in the processing of the cells of tomato (Lycopersicon esculentum L.) biotic elicitors, Cytol. Genet., 2008, vol. 42, no. 2, pp. 90–95. https://doi.org/10.3103/S0095452708020047

    Article  Google Scholar 

  28. Venzhik, Y., Tiotov, A., and Talanova, V., Response of wheat plants to the combined impact of low temperature and cadmium, Proc. Karelian Sci. Center RAS, 2017, no. 12, pp. 108–117. https://doi.org/10.17076/eb662

  29. Karou, D., Dicko, M.H., Simpore, J., and Traore, A.S., Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso, Afr. J. Biotechnol., 2005, no. 4, pp. 823–828.

  30. Gupta, S.K. and Tripathi, S.C., Fungitoxic activity of Solanum torvum against Fusarium sacchari, Plant Protect. Sci., 2011, vol. 47, no. 3, pp. 83–91.

    Article  CAS  Google Scholar 

  31. Plotnikova, L.Y., Cytological, molecular and genetic bases of plant species immunity to fungal pathogens, Mycol. Phytopathol., 2008, vol. 42, no. 5, pp. 393–410.

    Google Scholar 

  32. Udalova, Zh.V. and Zinovieva, S.V., Induction of plant resistance to nematodes sedentary biogenic elicitors, Russ. J. Parasitol., 2016, vol. 38, no. 4, pp. 575–582.

    Article  Google Scholar 

  33. Chowdhury, J., Henderson, M., Schweizer, P., Burton, R.A., Fincher, G.B., and Little, A.C., Diferential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. Hordei, New Phytologist, 2014, vol. 3, no. 204, pp. 650–60. PMID: 25138067

    Article  Google Scholar 

  34. Zipfel, C., Pattern-recognition receptors in plant innate immunity, Curr. Opin. Immunol., 2008, no. 20, pp. 10–16. https://doi.org/10.1016/j.coi.2007.11.003

    Article  CAS  Google Scholar 

  35. Newman, M.A., Dow, J.M., Molinaro, A., and Parrilli, M., Priming, induction and modulation of plant defense responses by bacteria lipopolysaccharides, J. Endotoxin Res., 2007, no. 13, pp. 69–84.

  36. Nicaise, V., Roux, M., and Zipfel, C., Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm, Plant Physiol., 2009, no. 150, pp. 1638–1647.

    Article  CAS  Google Scholar 

  37. Miedes, E., Vanholme, R., Boerjan, W., and Molina, A., The role of the secondary cell wall in plant resistance to pathogens, Front. Plant Sci., 2014, no. 5, pp. 358–364. https://doi.org/10.3389/fpls.2014.00358

  38. Ozgonen, H., Yardimci, N., and Kilic, H.C., Induction of phenolic compounds and pathogenesis related proteins by mycorrhizal fungal inoculations against Phytophthora capsici Leonian in pepper, Pak. J. Biol. Sci., 2009, vol. 17, no. 12, pp. 1181–1187. https://doi.org/10.3923/pjbs.2009.1181.1187

    Article  Google Scholar 

  39. Plotnikova, L.Y., Cytological, molecular and genetic bases of plant species immunity to fungal pathogens, Mycol. Phytopathol., 2008, vol. 42, no. 5, pp. 393–410.

    Google Scholar 

  40. Glansdorff, P. and Prigogine, I., Thermodynamics Theory of Structure, Stability and Fluctuations, London: Wiley-Interscience, 1971. https://doi.org/10.1119/1.1987158

    Google Scholar 

  41. Bhuiyan, N.H., Selvaraj, G., Wei, Y., and King, J., Role of lignification in plant defense, Plant Signal. Behav., 2009, vol. 2, no. 4, pp. 158–190. https://doi.org/10.4161/psb.4.2.7688

    Article  Google Scholar 

  42. Wei, L., Advances and prospects in wheat eyespot research: contribution from genetics and molecular tools, J. Phytopathol., 2011, vol. 159, nos. 7–8, pp. 457–470.

    Article  CAS  Google Scholar 

  43. Panyuta, O.O., Belava, V.N., and Taran, N.Y., UA Patent no. 389960 A01N 1/04, 2014.

  44. Kauss, H., Jeblick, W., and Domard, A., The degrees of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus, Planta, 1989, vol. 178, no. 3, pp. 385–392. PMID: .24212905

    Article  CAS  Google Scholar 

  45. Kim, K.-H., Tsao, R., Yang, R., and Cui, S.W., Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions, Food Chem., 2006, vol. 95, no. 3, pp. 466–473. https://doi.org/10.1016/j.foodchem.2005.01.032

    Article  CAS  Google Scholar 

  46. Emelyanov, V., Polyakovsky, S., and Dmitriev, A., Trigger range of concentrations of cytosolic calcium in induction of defense reactions in tomato cells (Lycopersicon esculentum L.), Rep. NAS Ukr., 2008, no. 6, pp. 153–157. http://dspace.nbuv.gov.ua/handle/ 123456789/4949.

  47. Prigogine, I., From Being to Becoming, Moscow: Science, 1985.

    Google Scholar 

  48. Sanders, R.A. and Hiatt, W., Tomato transgene structure and silencing, Nat. Biotechnol., 2005, vol. 3, no. 23, pp. 287–289. PMID .15765076

    Article  Google Scholar 

  49. Barrangou, R., The bacterial origins of the CRISPR genome-editing revolution, Hum. Gene Ther., 2015, vol. 26, no. 7, pp. 413–424.

    Article  Google Scholar 

Download references

Funding

This study did not receive any specific grants from financial institutions in the public, commercial, or noncommercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Boboshko, V. Emelyanov, O. Panyuta or N. Taran.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boboshko, O., Emelyanov, V., Panyuta, O. et al. Constitutional and Induced Accumulation of Callose and Phenol Compounds as Elements of Systemic Resistance in Winter Wheat Sprouts. Cytol. Genet. 53, 375–383 (2019). https://doi.org/10.3103/S0095452719050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719050049

Keywords:

Navigation