Skip to main content
Log in

Thirty years after the Chernobyl accident: Molecular genetic mechanisms of carcinogenesis of the thyroid gland

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The review presents data on the basic molecular genetic mechanisms of formation of papillary thyroid carcinoma. The participation of ionizing radiation in the cancer pathogenesis was analyzed. The role of tumor microenvironment, inflammation, and nuclear transcription factor NF-κB in the initiation and development of papillary thyroid carcinoma was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pushkarev, V.M., Kovzun, O.I., and Tronko, M.D., Molecular-genetic mechanisms of malignant thyroid tumors formation, J. AMN Ukraine, 2009, vol. 15, no. 1, pp. 116–127.

    CAS  Google Scholar 

  2. Xing, M., Molecular pathogenesis and mechanisms of thyroid cancer, Nat. Rev. Cancer, 2013, vol. 13, pp. 184–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu, Z., Ciampi, R., Nikiforova, M.N., Gandi, M., and Nikiforov, Y.E., Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity, J. Clin. Endocrinol. Metab., 2006, vol. 91, pp. 3603–3610.

    Article  CAS  PubMed  Google Scholar 

  4. Schoetz, U., Saenko, V., Yamashita, S., and Thomas, G.A., Molecular biology studies of Ukrainian thyroid cancer after Chernobyl, in Thyroid Cancer in Ukraine After Chernobyl. Dosimetry, Epidemiology, Pathology, Molecular Biology, Nagasaki: NASHIM, 2014.

    Google Scholar 

  5. Voscoboynyk, L.G., Kostyuchenko, N.M., Pushkarev, V.M., Bogdanova, T.I., and Tronko, M.D., Analysis of the expression of RET/PTC oncogenes in post-Chernobyl papillary thyroid carcinomas of patients from different age groups, Ukr. Biochem. J., 2010, vol. 82, no. 5, pp. 68–72.

    Google Scholar 

  6. Hess, J., Thomas, G., Braselmann, H., Bauer, V., Bogdanova, T., Wienberg, J., Zitzelsberger, H., and Unger, K., Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 23, pp. 9595–9600.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Unger, K., Zurnadzhy, L., Walch, A., Mall, M., Bogdanova, T., Braselmann, H., Hieber, L., Tronko, N., Hutzler, P., Jeremiah, S., Thomas, G., and Zitzelsberger, H., RET rearrangements in post-Chernobyl papillary thyroid carcinomas with a short latency analysed by interphase FISH, Br. J. Cancer, 2006, vol. 94, pp. 1472–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Voscoboynyk, L.G., Molecular-genetic aspects of thyroid papillary carcinomas development, J. AMS Ukraine, 2010, vol. 16, no. 4, pp. 605–629.

    Google Scholar 

  9. Fagin, J.A., How thyroid tumors start and why it matters: kinase mutants as targets for solid cancer pharmacotherapy, J. Endocrinol., 2004, vol. 183, pp. 249–256.

    Article  CAS  PubMed  Google Scholar 

  10. Unger, K., Malisch, E., Thomas, G., Braselmann, H., Walch, A., Jackl, G., Lewis, P., Lengfelder, E., Bogdanova, T., Wienberg, J., and Zitzelsberger, H., Array CGH demonstrates characteristic aberration signatures in human papillary thyroid carcinomas governed by RET/PTC, Oncogene, 2008, vol. 27, no. 33, pp. 4592–4602.

    Article  CAS  PubMed  Google Scholar 

  11. Richter, H., Braselmann, H., Hieber, L., Thomas, G., Bogdanova, T., Tronko, N., and Zitzelsberger, H., Chromosomal imbalances in post-Chernobyl thyroid tumors, Thyroid, 2004, vol. 14, pp. 1061–1064.

    Article  PubMed  Google Scholar 

  12. Stein, L., Rothschild, J., Luce, J., Cowell, J.K., Thomas, G., Bogdanova, T.I., Tronko, M.D., and Hawthorn, L., Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from Chernobyl pediatric patients, Thyroid, 2010, vol. 20, no. 5, pp. 475–487.

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues, R., Roque, L., Espadinha, C., Pinto, A., Domingues, R., Dinis, J., Catarino, A., Pereira, T., and Leite, V., Comparative genomic hybridization, BRAF, RAS, RET, and oligo-array analysis in aneuploid papillary thyroid carcinomas, Oncol. Rep., 2007, vol. 18, pp. 917–926.

    CAS  PubMed  Google Scholar 

  14. Ciampi, R. and Nikiforov, Y.E., RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis, Endocrinology, 2007, vol. 148, no. 3, pp. 936–941.

    Article  CAS  PubMed  Google Scholar 

  15. Xing, M., BRAF mutation in thyroid cancer: pathogenic role, molecular bases, and clinical implications, Endocrine Rev., 2007, vol. 28, no. 7, pp. 742–762.

    CAS  Google Scholar 

  16. Voscoboynyk, L.G., Oncogenes RET/PTC and mechanisms of their involvement in thyroid carcinogenesis, Ukr. Biochem. J., 2009, vol. 81, no. 6, pp. 17–25.

    Google Scholar 

  17. Burotto, M., Chiou, V.L., Lee, J.M., and Kohn, E.C., The MAPK pathway across different malignancies: a new perspective, Cancer, 2014, vol. 120, no. 22, pp. 3446–3456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimmel, R.R., Zhao, L.P., Nguyen, D., Lee, S., Aronszajn, M., Cheng, C., Troshin, V.P., Abrosimov, A., Delrow, J., Tuttle, R.M., Tsyb, A.F., Kopecky, K.J., Davis, S., and Neiman, P.E., Microarray comparative genomic hybridization reveals genome-wide patterns of DNA gains and losses in post-Chernobyl thyroid cancer, Radiat. Res., 2006, vol. 166, pp. 519–531.

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi, M., Saenko, V.A., Rogounovitch, T.I., Kawaguchi, T., Drozd, V.M., Takigawa-Imamura, H., Akulevich, N.M., Ratanajaraya, C., Mitsutake, N., Takamura, N., Danilova, L.I., Lushchik, M.L., Demidchik, Y.E., Heath, S., Yamada, R., Lathrop, M., Matsuda, F., and Yamashita, S., The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl, Hum. Mol. Genet., 2010, vol. 19, pp. 2516–2523.

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki, K., Mitsutake, N., Saenko, V., and Yamashita, S., Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis, Cancer Sci., 2015, vol. 106, no. 2, pp. 127–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gandhi, M., Dillon, L.W., Pramanik, S., Nikiforov, Y.E., and Wang, Y.H., DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells, Oncogene, 2010, vol. 29, no. 15, pp. 2272–2280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knostman, K.A.B., Jhiang, S.M., and Capen, C.C., Genetic alterations in thyroid cancer: the role of mouse models, Vet. Pathol., 2007, vol. 44, pp. 1–14.

    Article  CAS  PubMed  Google Scholar 

  23. Volpato, C.B., Martinez-Alfaro, M., Corvi, R., Gabus, C., Sauvaigo, S., Ferrari, P., Bonora, E., De Grandi, A., and Romeo, G., Enhanced sensitivity of the RET protooncogene to ionizing radiation in vitro, Cancer Res., 2008, vol. 68, no. 21, pp. 8986–8692.

    Article  CAS  PubMed  Google Scholar 

  24. Tronko, M.D., Howe, G.R., Bogdanova, T.I., Bouville, A.C., Epstein, O.V., Brill, A.B., Likhtarev, I.A., Fink, D.J., Markov, V.V., Greenebaum, E., Olijnyk, V.A., Masnyk, I.J., Shpak, V.M., McConnell, R.J., Tereshchenko, V.P., Robbins, J., Zvinchuk, O.V., Zablotska, L.B., Hatch, M., Luckyanov, N.K., Ron, E., Thomas, T.L., Voilleque, P.G., and Beebe, G.W., A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: thyroid cancer in Ukraine detected during first screening, J. Natl. Cancer. Inst., 2006, vol. 98, pp. 897–903.

    Article  PubMed  Google Scholar 

  25. Selmansberger, M., Kaiser, J.C., Hess, J., Guthlin, D., Likhtarev, I., Shpak, V., Tronko, M., Brenner, A., Abend, M., Blettner, M., Unger, K., Jacob, P., and Zitzelsberger, H., Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas, Carcinogenesis, 2015, vol. 36, no. 7, pp. 748–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Selmansberger, M., Braselmann, H., Hess, J., Bogdanova, T., Abend, M., Tronko, M., Brenner, A., Zitzelsberger, H., and Unger, K., Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian-American cohort, Carcinogenesis, 2015, vol. 36, no. 11, pp. 1381–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Selmansberger, M., Feuchtinger, A., Zurnadzhy, L., Michna, A., Kaiser, J.C., Abend, M., Brenner, A., Bogdanova, T., Walch, A., Unger, K., Zitzelsberger, H., and Hess, J., CLIP2 as radiation biomarker in papillary thyroid carcinoma, Oncogene, 2015, vol. 34, no. 30, pp. 3917–3925.

    Article  CAS  PubMed  Google Scholar 

  28. Rogounovitch, T.I., Saenko, V.A., Ashizawa, K., Sedliarou, I.A., Namba, H., Abrosimov, A.Y., Lushnikov, E.F., Roumiantsev, P.O., Konova, M.V., Petoukhova, N.S., Tchebotareva, I.V., Ivanov, V.K., Chekin, S.Y., Bogdanova, T.I., Tronko, M.D., Tsyb, A.F., Thomas, G.A., and Yamashita, S., Tp53 codon 72 polymorphism in radiation-associated human papillary thyroid cancer, Oncol. Rep., 2006, vol. 15, no. 4, pp. 949–956.

    CAS  PubMed  Google Scholar 

  29. Akulevich, N.M., Saenko, V.A., Rogounovitch, T.I., Drozd, V.M., Lushnikov, E.F., Ivanov, V.K., Mitsutake, N., Kominami, R., and Yamashita, S., Polymorphisms of DNA damage response genes in radiation- related and sporadic papillary thyroid carcinoma, Endocr. Related. Cancer, 2009, vol. 16, pp. 491–503.

    Article  CAS  Google Scholar 

  30. Wyrobek, A.J., Manohar, C.F., Krishnan, V.V., Nelson, D.O., Furtado, M.R., Bhattacharya, M.S., Marchetti, F., and Coleman, M.A., Low dose radiation response curves, networks and pathways in human lymphoblastoid cells exposed from 1 to 10 cGy of acute gamma radiation, Mutat. Res., 2011, vol. 722, pp. 119–130.

    CAS  Google Scholar 

  31. Ory, C., Ugolin, N., Levalois, C., Lacroix, L., Caillou, B., Bidart, J.M., Schlumberger, M., Diallo, I., de Vathaire, F., Hofman, P., Santini, J., Malfoy, B., and Chevillard, S., Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors, Endocr. Related Cancer, 2011, vol. 18, pp. 193–206.

    Article  CAS  Google Scholar 

  32. Handkiewicz-Junak, D., Swierniak, M., Rusinek, D., Oczko-Wojciechowska, M., Dom, G., Maenhaut, C., Unger, K., Detours, V., Bogdanova, T., Thomas, G., Likhtarov, I., Jaksik, R., Kowalska, M., Chmielik, E., Jarzab, M., Swierniak, A., and Jarzab, B., Gene signature of the post-Chernobyl papillary thyroid cancer, Eur. J. Nucl. Med. Mol. Imaging, 2016, vol. 43, no. 7, pp. 1267–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Innocenti, D., Colombo, C., Perrino, M., Ravasi, E., Rossi, S., Cirello, V., Beck-Peccoz, P., Borrello, M.G., and Fugazzola, L., The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies, Clin. Endocrinol., 2010, vol. 72, pp. 702–708.

    Google Scholar 

  34. Guarino, V., Castellone, M.D., Avilla, E., Avilla, E., and Melillo, R.M., Thyroid cancer and inflammation, Mol. Cell. Endocrinol., 2010, vol. 321, pp. 94–102.

    Article  CAS  PubMed  Google Scholar 

  35. Li, X., Abdel-Mageed, A.B., Mondal, D., and Kandil, E., The nuclear factor kappa-B signaling pathway as a therapeutic target against thyroid cancers, Thyroid, 2013, vol. 23, no. 2, pp. 209–218.

    Article  PubMed  Google Scholar 

  36. Pacifico, F., Mauro, C., Barone, C., Crescenzi, E., Mellone, S., Monaco, M., Chiappetta, G., Terrazzano, G., Liguoro, D., Vito, P., Consiglio, E., Formisano, S., and Leonardi, A., Oncogenic and antiapoptotic activity of NF-?B in human thyroid carcinomas, J. Biol. Chem., 2004, vol. 279, no. 52, pp. 54610–54619.

    Article  CAS  PubMed  Google Scholar 

  37. Mantovani, A., Allavena, P., Sica, A., and Balkwill, F., Cancer-related inflammation, Nature, 2008, vol. 454, no. 7203, pp. 436–444.

    Article  CAS  PubMed  Google Scholar 

  38. Palona, I., Namba, H., Mitsutake, N., Starenki, D., Podtcheko, A., Sedliarou, I., Ohtsuru, A., Saenko, V., Nagayama, Y., Umezawa, K., and Yamashita, S., BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation, Endocrinology, 2006, vol. 147, no. 12, pp. 5699–5707.

    Article  CAS  PubMed  Google Scholar 

  39. Pushkarev, V.V., Starenki, D.V., Pushkarev, V.M., Kovzun, O.I., and Tronko, M.D., Inhibitor of the transcription factor NF-?B, DHMEQ, enhances the effect of paclitaxel on cells of anaplastic thyroid carcinoma in vitro and in vivo, Ukr. Biochem. J., 2015, vol. 87, no. 3, pp. 33–44.

    Google Scholar 

  40. Neely, R.J., Brose, M.S., Gray, C.M., McCorkell, K.A., Leibowitz, J.M., Ma, C., Rothstein, J.L., and May, M.J., The RET/PTC3 oncogene activates classical NF-κB by stabilizing NIK, Oncogene, 2011, vol. 30, no. 1, pp. 87–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Pushkarev.

Additional information

Original Russian Text © N.D. Tronko, V.M. Pushkarev, 2016, published in Tsitologiya i Genetika, 2016, Vol. 50, No. 6, pp. 15–22.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tronko, N.D., Pushkarev, V.M. Thirty years after the Chernobyl accident: Molecular genetic mechanisms of carcinogenesis of the thyroid gland. Cytol. Genet. 50, 366–371 (2016). https://doi.org/10.3103/S0095452716060098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716060098

Keywords

Navigation