Skip to main content
Log in

Genetic diversity of some Iranian sweet cherry (Prunus avium) cultivars using microsatellite markers and morphological traits

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize 23 important Iranian sweet cherry (Prunus avium) cultivars collected from different provinces of Iran and 1 foreign cultivar, which was used as control, considered for breeding programs by using 21 microsatellite markers and 27 morphological traits. In sweet cherry (Prunus avium) accessions, leaf, fruit, and stone morphological characters were evaluated during two consecutive years. The study revealed a high variability in the set of evaluated sweet cherry accessions. The majority of important correlations were determined among variables representing fruit and leaf size and variables related to color. Cluster analysis distinguished sweet cherry accessions into two distinct groups. Principal component analysis (PCA) of qualitative and quantitative morphological parameters explained over 86.59% of total variability in the first seven axes. In PCA, leaf traits such as leaf length and width, and fruit traits such as length, width, and weight, and fruit flesh and juice color were predominant in the first two components, indicating that they were useful for the assessment of sweet cherry germplasm characterization. Out of 21 SSR markers, 16 were polymorphic, producing 177 alleles that varied from 4 to 16 alleles (9.35 on average) with a mean heterozygosity value of 0.82 that produced successful amplifications and revealed DNA polymorphisms. Allele size varied from 95 to 290 bp. Cluster analyses showed that the studied sweet cherry genotypes were classified into five main groups based mainly on their species characteristics and SSR data. In general, our results did not show a clear structuring of genetic variability within the Iranian diffusion area of sweet cherry, so it was not possible to draw any indications on regions of provenance delimitation. The results of this study contribute to a better understanding of sweet cherry genetic variations in Iran, thus making for more efficient programs aimed at preserving biodiversity and more rational planning of the management of reproductive material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ercisli, S., A short review of the fruit germplasm resources of Turkey, Genet. Res. Crop Evol., 2004, vol. 51, pp. 419–435.

    Article  Google Scholar 

  2. Caliskan, O. and Polat, A., Fruit characteristics of cultivars and clones grown in Turkey, Sci. Hort., 2008, vol. 115, pp. 360–367.

    Article  Google Scholar 

  3. Gozlekci, S., Selection studies on fig (Ficus carica L.) in Antalya province of Turkey, Afr. J. Biotech., 2010, vol. 9, pp. 7857–7862.

    Google Scholar 

  4. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Budan, S., Petre, L., and Gradinariu, G., Evaluation of some native sweet cherry genotypes collected ex situ into Romanian national germplasm, Acta Hortic., 2009, vol. 814, pp. 157–160.

    Article  Google Scholar 

  6. Gregoriusa, H.R., Kownatzkic, D., and Holtken, A.M., Spatial patterns of mating relations in wild cherry (Prunus avium L.), Evol. Syst., 2011, vol. 13, pp. 36–44.

    Google Scholar 

  7. Holtken, A.M. and Gregorius, H.R., Detecting local establishment strategies of wild cherry (Prunus avium L.), BMC Ecol., 2006, vol. 13, pp. 6–13.

    Google Scholar 

  8. Schneider, S., Roessli, D., and Excoffier, L., Arlequin: a software for population genetics data analysis, Version 2.000, Genetics and Biometry Laboratory, Dept. of Anthropology, University of Geneva, Switzerland, 2000.

    Google Scholar 

  9. Wagner, H.W. and Sefe, K.M., IDENTITY 1.0., Centre for Applied Genetics, University of Agricultural Science, Vienna, 1999.

    Google Scholar 

  10. Cantini, C., Iezzoni, A.F., Lamboy, W.F., Boritzki, M., and Struss, D., DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats, J. Amer. Soc. Hort. Sci., 2001, vol. 126, pp. 205–209.

    CAS  Google Scholar 

  11. Cipriani, G., Lot, G., Huang, W.G., Marrazzo, M.T., Peterlunger, E., and Testolin, R., AC/GT and AG/CT microsatellite repeats in peach (Prunus persica): Isolation characterization and cross-species amplification in Prunus, Theor. Appl. Genet., 1999, vol. 99, pp. 65–72.

    Article  CAS  Google Scholar 

  12. Wunsch, A. and Hormaz, J.I., Molecular characterization of sweet cherry (Prunus avium L.) genotypes using peach (Prunus persica) SSR sequences, Heredity, 2002, vol. 89, pp. 56–63.

    Article  CAS  PubMed  Google Scholar 

  13. Dirlewanger, E., Cosson, P., Tavaud, M., Aranzana, J., Poizat, C., Zanetto, A., Arus, P., and Laigret, F., Development of microsatellite markers in peach Prunus persica (L.) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.), Theor. Appl. Genet., 2002, vol. 105, pp. 127–138.

    Article  CAS  PubMed  Google Scholar 

  14. Schueler, S., Tusch, A., Schuster, M., and Ziegenhagen, B., Characterization of microsatellites in wild and sweet cherry (Prunus avium L.) markers for individual identification and reproductive processes, Genome, 2003, vol. 46, pp. 95–102.

    Article  CAS  PubMed  Google Scholar 

  15. Xuan, H., Wang, R., Buchele, M., Moller, O., and Hartmann, V., Microsatellite markers (SSR) as a tool to assist in identification of sweet (Prunus avium) and sour cherry (Prunus cerasus), Acta Hortic., 2009, vol. 839, pp. 507–514.

    Article  CAS  Google Scholar 

  16. Guarino, C., Santoro, S., Desimone, L., and Cipriani, G., Nuclear DNA study in wild populations and sweet cherry cultivars, Genome, 2009, vol. 52, pp. 320–337.

    Article  CAS  PubMed  Google Scholar 

  17. Olmstead, J.W., Sebolt, A.M., Cabrera, A., Sooriyapathirana, S.S., Hammar, S., and Iriarte, G., Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map, Tree Genet. Genom., 2008, vol. 4, pp. 897–910.

    Article  Google Scholar 

  18. Lacis, G., Kaufmane, E., Trajkovski, V., and Rashal, I., Morphological variability and genetic diversity within Latvian and Swedish sweet cherry collections, Acta Univ. Lat., 2009, vol. 753, pp. 19–32.

    Google Scholar 

  19. Ercisli, S., Agar, G., Yildirim, N., Duralija, B., Vokurka, A., and Karlidag, H., Genetic diversity in wild sweet cherries in Turkey revealed by SSR markers, Genet. Mol. Res., 2011, vol. 2, pp. 1211–1219.

    Article  Google Scholar 

  20. Schuler, S., Tusch, A., and Scholz, F., Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites, Mol. Ecol., 2006, vol. 15, pp. 3231–3243.

    Article  Google Scholar 

  21. Gisbert, A.D., Badensen, M.L., Tobutt, K.R., Llancer, G., and Romero, C., Determination of S-allele composition of sweet cherry (Prunus avium L.) cultivars grown in the southeast of Spain by PCR analysis, J. Hortic. Sci. Biotech., 2008, vol. 83, pp. 246–252.

    CAS  Google Scholar 

  22. Avramidou, E., Ganopoulos, I.V., and Aravanopoulos, F.A., DNA fingerprinting of elite Greek wild cherry (Prunus avium L.) genotypes using microsatellite markers, Forestry, 2010, vol. 83, pp. 1–7.

    Article  Google Scholar 

  23. Yeh, F.C. and Boyle, T.J.B., Population genetic analysis of codominant and dominant markers and quantitative traits, Belg. J. Bot., 1997, vol. 129, pp. 157–163.

    Google Scholar 

  24. Ganopoulos, I.V., Avramidou, E., Fasoula, D.A., Diamantidis, G., and Aravanopoulos, F.A., Assessing interand intra-cultivar variation in Greek by SSR markers, Acta. Hortic., 2010, vol. 8, pp. 242–248.

    CAS  Google Scholar 

  25. Gulen, H., Ipek, A., Ergin, S., Akcay, M.E., and Eris, A., Assessment of genetic relationships among 29 introduced and 49 local sweet cherry accessions in Turkey using AFLP and SSR markers, J. Hortic. Sci. Biotech., 2010, vol. 1, pp. 427–431.

    Google Scholar 

  26. Usenik, V., Fabcic, J., and Stampar, F., Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.), Food Chem., 2008, vol. 107, pp. 185–192.

    CAS  Google Scholar 

  27. DeCuyper, B., Sonnefeld, T., and Tobutt, K.R., Determining self-incompatibility genotypes in Belgian wild cherries, Mol. Ecol., 2005, vol. 14, pp. 945–955.

    Article  CAS  Google Scholar 

  28. Kacar, Y.A., Iezzoni, A., and Cetiner, S., Sweet cherry cultivar identification by using SSR markers, J. Biol. Sci., 2005, vol. 5, pp. 616–619.

    Article  CAS  Google Scholar 

  29. Shannon, C.E. and Weaver, W., The mathematical theory of communication, Urbana, Univ. Illinois Press, 1949.

    Google Scholar 

  30. Struss, D., Ahmad, R., Southwick, S.M., and Boritzki, M., Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers, J. Am. Soc. Hortic. Sci., 2003, vol. 128, pp. 904–909.

    CAS  Google Scholar 

  31. Paetkau, D., Calvert, W., Stirling, I., and Strobeck, C., Microsatellite analysis of population structure in Canadian polar bears, Mol. Ecol., 1995, vol. 4, pp. 347–354.

    Article  CAS  PubMed  Google Scholar 

  32. Perez-Sanchez, R., Gomez-Sanchez, M.A., and Morales-Corts, R., Agromorphological characterization of traditional Spanish sweet cherry (Prunus avium L.), sour cherry (Prunus cerasus L.) and duke cherry (Prunus xgondouinii) cultivars, Span. J. Agric. Res., 2008, vol. 6, pp. 42–55.

    Article  Google Scholar 

  33. Zhang, L.Y., Bernard, M., Leroy, P., and Feuillet, C., High transferability of bread wheat EST-derived SSRs to other cereals, Theor. Appl. Genet., 2005, vol. 111, pp. 677–687.

    Article  CAS  PubMed  Google Scholar 

  34. Hendre, P.S., Phanindranath, R., Annapurna, V., Lalremruata, A., and Aggarwal, R.K., Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies, BMC Plant Biol., 2008, vol. 8, pp. 34–41.

    Article  Google Scholar 

  35. Luro, F.L., Constantino, G., Terol, J., Argoust, X., Allarlo, T., Wincker, P., Talon, M., Ollitraut, P., and Morillon, R., Transferability of the ESR-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping, BMC Genom., 2008, vol. 23, pp. 345–355.

    Google Scholar 

  36. Cheng, Z. and Huang, H., SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships, Sci. Hortic. Amsterdam, 2009, vol. 120, pp. 188–193.

    Article  CAS  Google Scholar 

  37. Nei, M., Genetic distance between populations, Am. Natur., 1972, vol. 106, pp. 283–292.

    Article  Google Scholar 

  38. Moreno, J. and Trujillo, I., Genetic characterization and relatedness among cherry cultivars in a germplasm bank by randomly amplified polymorphic DNA analysis, Agr. Conspec. Sci., 2005, vol. 70, pp. 105–111.

    Google Scholar 

  39. Li, M.M., Cai, Y.L., Qian, Z.Q., and Zhao, G.F., Genetic diversity and differentiation in Chinese sour cherry Prunus pseudocerasus Lindl., and its implications for conservation, Genet. Resour. Crop Evol., 2009, vol. 56, pp. 455–464.

    Article  CAS  Google Scholar 

  40. Frascaria, N., Santi, F., and Gouyon, P.H., Genetic differentiation within and among populations of Chestnut and Wild Cherry (Prunus avium L.), Heredity, 1993, vol. 70, pp. 634–641.

    Article  Google Scholar 

  41. Mariette, S., Lefranc, M., Legrand, P., Taneyhill, D., Frascaria-Lacoste, N., and Machon, N., Genetic variability in wild cherry populations in France, Theor. Appl. Genet., 1997, vol. 94, pp. 904–908.

    Article  Google Scholar 

  42. Reim, S., Proft, A., Heinz, S., and Hofer, M., Diversity of the European indigenous wild apple Malus sylvestris Mill in the East mountains, Genet. Resour. Crop Evol., 2012, vol. 59, pp. 1101–1114.

    Article  Google Scholar 

  43. Krahl, K.H., Lansari, A., and Iezzoni, A.F., Morphological variation within a sour cherry collection, Euphytica, 1991, vol. 52, pp. 47–55.

    Google Scholar 

  44. Rakonjac, V., Fotiric-Aksic, M., Nikolic, D., Milatovic, D., and Colic, S., Morphological characterization of “Oblacinska” sour cherry by multivariate analysis, Sci. Hortic., 2010, vol. 125, pp. 679–684.

    Article  Google Scholar 

  45. Hjalmarsson, I. and Ortiz, R., In situ and ex situ assessment of morphological and fruit variation in Scandinavian sweet cherry, Sci. Hortic., 2000, vol. 85, pp. 37–49.

    Article  Google Scholar 

  46. Lacis, G., Rashal, I., Ruisa, S., Trajkovski, V., and Iezzoni, A.F., Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers, Sci. Hortic., 2009, vol. 121, pp. 451–457.

    Article  CAS  Google Scholar 

  47. Khadivi-Khub, A., Zamani, Z., and Fatahi, M.R., Multivariate analysis of Prunus cerasus germplasm in Iran using morphological variables, Genet. Resour. Crop Evol., 2012, vol. 59, pp. 909–926.

    Article  Google Scholar 

  48. Amurrio, J.M., Deron, A.M., and Zeven, A.C., Numerical taxonomy of Iberian pea landraces based on quantitative and qualitative characters, Euphytica, 1995, vol. 82, pp. 195–205.

    Article  Google Scholar 

  49. Bhatt, G.M., Multivariate analysis approach to selection of parents for hybridization aiming at yield improvement in self-pollinated crops, Aust. J. Agric. Res., 1970, vol. 21, pp. 1–7.

    Article  Google Scholar 

  50. Sneath, P.H. and Sokal, R.R., Numerical Taxonomy, San Francisco: Freeman, 1973.

    Google Scholar 

  51. Dever, M.C., Macdonald, R.A., Chiff, M.A., and Lane, W.D., Sensory evaluation of sweet cherry cultivars, Hort. Sci., 1996, vol. 31, pp. 150–153.

    Google Scholar 

  52. Botstein, D., White, R.L., Skolnick, M., and Davis, R.W., Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 1980, vol. 32, pp. 314–331.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Manubens, A., Lobos, S., Jadue, Y., Toro, M., Messina, R., Liadser, M., and Seelenfreund, D., DNA isolation and AFLP fingerprinting of nectarine and peach varieties (Prunus persica), Plant Mol. Biol. Rpt., 1999, vol. 17, pp. 255–267.

    Article  CAS  Google Scholar 

  54. Baldoni, L., Tosti, N., Ricciolini, C., Belaj, A., Arcioni, S., Pannelli, G., Germana, M.A., Mulas, M., and Porceddu, A., Genetic structure of wild and cultivated olives in the central Mediterranean basin, Ann. Bot., 2006, vol. 98, pp. 935–942.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 11–15.

    Google Scholar 

  56. Bassam, B.J., Caetano-Anolles, G., and Gresshoff, P.T., Fast and sensitive silver staining of DNA in polyacrylamide gels, Anal. Biochem., 1991, vol. 196, pp. 80–83.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Z., Weber, J.L., Zhang, G., and Tanksley, S.D., Survey of plant short tandem DNA repeats, Theor. Appl. Genet., 1994, vol. 88, pp. 1–6.

    CAS  PubMed  Google Scholar 

  58. Bowcock, A.M., Ruiz-Linares, A., Tomfohde, J., Minch, E., Kidd, J.R., and Cavalli-Sforza, L.L., High resolution of human evolutionary trees with polymorphic microsatellites, Nature, 1994, vol. 368, pp. 455–457.

    Article  CAS  PubMed  Google Scholar 

  59. Stoeckel, S., Grange, J., Fernandez-Manjarres, J.F., Bilger, I., Frascaria-Lacoste, N., and Mariette, S., Heterozygote excess in a self-incompatible and partially clonal forest tree species, Mol. Ecol., 2006, vol. 15, pp. 2109–2118.

    Article  CAS  PubMed  Google Scholar 

  60. Vaughan, S.P., Cottrell, J.E., Moodley, D.J., Connolly, T., and Russell, K., Clonal structure and recruitment in British wild cherry (Prunus avium L.), Forest. Ecol. Manag., 2007, vol. 242, pp. 419–430.

    Article  Google Scholar 

  61. Ohta, S., Katsuki, T., Tanaka, T., Hayashi, T., Sato, Y.I., and Yamamoto, T., Genetic variation in flowering cherries characterized by SSR markers, Breed. Sci., 2005, vol. 55, pp. 415–424.

    Article  CAS  Google Scholar 

  62. Peakall, R., Gilmore, S., Keys, W., Morgante, M., and Rafalski, A., Cross species amplification of soybean (Glycine max) simple-sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants, Mol. Biol. Evol., 1998, vol. 15, pp. 1275–1287.

    Article  CAS  PubMed  Google Scholar 

  63. Ruan, C., Germplasm-regression-combined marker trait association identification in plants, Afr. J. Biotechnol., 2010, vol. 9, pp. 573–580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farsad.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farsad, A., Esna-Ashari, M. Genetic diversity of some Iranian sweet cherry (Prunus avium) cultivars using microsatellite markers and morphological traits. Cytol. Genet. 50, 8–19 (2016). https://doi.org/10.3103/S0095452716010059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716010059

Keywords

Navigation