Skip to main content
Log in

Sensitivity to the Neutrino Electric Millicharge of Experiments Involving Elastic Neutrino-Electron and Coherent Elastic Neutrino-Nucleus Processes

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Different constraints to the neutrino electric millicharge (NEM) have been obtained by considering interactions such as the elastic neutrino-electron scattering (ENES). However, the great potential of the coherent elastic neutrino-nucleus scattering (CE\(\nu\)NS) in future reactor neutrino experiments could be an alternative to improve the current limits on the NEM. In this work we study the sensitivity of ENES and CE\(\nu\)NS interactions in reactor experiments to the neutrino charge through a combination of different experimental data. Bounds up to the order of \(10^{-14}e\) are achieved from CE\(\nu\)NS at reactor neutrino experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. P. Vogel and J. Engel, Phys. Rev. D 39, 3378 (1989). https://doi.10.1103/PhysRevD.39.3378

  2. C. Giunti and A. Studenikin, Rev. Mod. Phys. 87, 531 (2015); arXiv: 1403.6344 [hep-ph]. https://doi.10.1103/RevModPhys.87.531

  3. M. Fukugita and T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, Berlin, 2003)

    Book  Google Scholar 

  4. A. I. Studenikin and I. Tokarev, Nucl. Phys. B 884, 396 (2014); arXiv: 1209.3245 [hep-ph]. https://doi.10.1016/j.nuclphysb.2014.04.026

  5. A. Studenikin and I. Tokarev, Nucl. Phys. Proc. Suppl. 237–238, 317 (2013). https://doi.10.1016/j.nuclphysbps.2013.04.115

  6. A. Studenikin, Eur. Phys. Lett. 107, 21001 (2014); arXiv: 1302.1168 [hep-ph]. https://doi.10.1209/0295-5075/107/21001; Eur. Phys. Lett. 107, 39901(E) (2014). https://doi.10.1209/0295-5075/107/39901

  7. D. Akimov et al. (COHERENT Collab.), Science (Washington, DC, U. S.) 357 (6356), 1123 (2017); arXiv: 1708.01294 [nucl-ex]. https://doi.10.1126/science.aao0990

  8. M. Cadeddu, F. Dordei, C. Giunti, Y. Li, and Y. Zhang, Phys. Rev. D 101, 033004 (2020); arXiv: 1908.06045 [hep-ph]. https://doi.10.1103/PhysRevD.101.033004

  9. M. Cadeddu, F. Dordei, C. Giunti, Y. F. Li, E. Picciau, and Y. Y. Zhang, Phys. Rev. D 102, 015030 (2020); arXiv: 2005.01645 [hep-ph]. https://doi.10.1103/PhysRevD.102.015030

  10. A. Parada, Adv. High Energy Phys. 2020, 5908904 (2020); arXiv: 1907.04942 [hep-ph]. https://doi.10.1155/2020/5908904

  11. G. S. Vidyakin et al., JETP Lett. 55, 206 (1992).

    ADS  Google Scholar 

  12. A. I. Derbin, A. V. Chernyi, L. A. Popeko, V. N. Muratova, G. A. Shishkina, and S. I. Bakhlanov, JETP Lett. 57, 768 (1993).

    ADS  Google Scholar 

  13. M. Deniz et al. (TEXONO Collab.), Phys. Rev. D 81, 072001 (2010); arXiv: 0911.1597 [hep-ex]. https://doi.10.1103/PhysRevD.81.072001

  14. Z. Daraktchieva et al. (MUNU Collab.), Phys. Lett. B 615, 153 (2005); hep-ex/0502037. https://doi.10.1016/j.physletb.2005.04.030

  15. A. G. Beda, V. B. Brudanin, V. G. Egorov, D. V. Medvedev, V. S. Pogosov, M. V. Shirchenko, and A. S. Starostin, Adv. High Energy Phys. 2012, 350150 (2012). https://doi.10.1155/2012/350150

  16. J. Barranco, O. G. Miranda, and T. I. Rashba, J. High Energy Phys. 0512, 021 (2005); hep-ph/0508299. https://doi.10.1088/1126-6708/2005/12/021

  17. A. Aguilar-Arevalo et al. (CONNIE Collab.), J. Instrum. 11, P07024 (2016); arXiv: 1604.01343 [physics.ins-det]. https://doi.10.1088/1748-0221/11/07/P07024

  18. Y. Farzan, M. Lindner, W. Rodejohann, and X. J. Xu, J. High Energy Phys. 1805, 066 (2018); arXiv: 1802.05171 [hep-ph]. https://doi.10.1007/JHEP.05(2018)066

  19. B. Dutta, R. Mahapatra, L. E. Strigari, and J. W. Walker, Phys. Rev. D 93, 013015 (2016); arXiv: 1508.07981 [hep-ph]. https://doi.10.1103/PhysRevD.93.013015

  20. D. Y. Akimov et al., J. Instrum. 12, C06018 (2017). https://doi.10.1088/1748-0221/12/06/C06018

  21. T. S. Kosmas, O. G. Miranda, D. K. Papoulias, M. Tortola, and J. W. F. Valle, Phys. Lett. B 750, 459 (2015); arXiv: 1506.08377 [hep-ph]. https://doi.10.1016/j.physletb.2015.09.054

Download references

Funding

We would like to thank to the Universidad Santiago de Cali (USC) for the support, grant no. 935-621120-G01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Parada.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parada, A. Sensitivity to the Neutrino Electric Millicharge of Experiments Involving Elastic Neutrino-Electron and Coherent Elastic Neutrino-Nucleus Processes. Moscow Univ. Phys. 77, 381–384 (2022). https://doi.org/10.3103/S0027134922020758

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134922020758

Keywords:

Navigation