Skip to main content
Log in

The DAMPE Space Mission: Status and Main Results

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The DArk Matter Particle Explorer (DAMPE) is a satellite orbiting at 500 km altitude in a Sun-synchronous orbit, taking data from its launch on December 17, 2015. DAMPE is composed by several particle detectors, working together to identify incoming particles and nuclei. Main goals of the DAMPE space mission are: study of cosmic-rays and electron-positron energy spectra, gamma-ray astronomy, and indirect dark matter search. The main results achieved by DAMPE will be presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. J. Chang et al. (DAMPE Collab.), Astropart. Phys. 95, 6–24 (2017). https://doi.org/10.1016/j.astropartphys.2017.08.005

    Article  ADS  Google Scholar 

  2. F. Alemanno et al. (DAMPE Collab.), Sci. Bull. 67, 679-684 (2022).. https://doi.org/10.1016/j.scib.2021.12.015

    Article  Google Scholar 

  3. M. Ackermann et al., Phys. Rev. D 91, 122002 (2015). https://doi.org/10.1103/PhysRevD.91.122002

    Article  ADS  Google Scholar 

  4. G. Ambrosi et al. (DAMPE Collab.), Nature (London, U.K.) 552, 63–66 (2017). http://dx.doi.org/10.1038/nature24475

    Article  ADS  Google Scholar 

  5. F. Aharonian et al. (The H. E. S. S. Collab.), Phys. Rev. Lett. 101, 261104 (2008). https://doi.org/10.1103/PhysRevLett.101.261104

    Article  ADS  Google Scholar 

  6. F. Aharonian et al. (The H. E. S. S. Collab.), Astron. Astrophys. 508, 561–564 (2009). https://doi.org/10.1051/0004-6361/200913323

    Article  ADS  Google Scholar 

  7. M. Aguilar et al. (AMS Collab.), Phys. Rev. Lett. 113, 221102 (2014). https://doi.org/10.1103/PhysRevLett.113.221102

    Article  ADS  Google Scholar 

  8. S. Abdollahi et al. (The Fermi-LAT Collab.), Phys. Rev. D 95 082007 (2017). https://doi.org/10.1103/PhysRevD.95.082007

    Article  ADS  Google Scholar 

  9. Q. An et al. (DAMPE Collab.), Sci. Adv. 5, eaax3793 (2019). https://doi.org/10.1126/sciadv.aax3793

  10. F. Alemanno et al. (DAMPE Collab.), Phys. Rev. Lett. 126, 201102 (2021). https://doi.org/10.1103/PhysRevLett.126.201102

    Article  ADS  Google Scholar 

  11. O. Adriani et al. (PAMELA Collab.), Science (Washington, DC, U. S.) 332, 69 (2011);

    Article  ADS  Google Scholar 

  12. O. Adriani et al. (PAMELA Collab.), Science (Washington, DC, U. S.) 332, 69 (2011); Adv. Space Res. 51, 219–226 (2013). https://doi.org/10.1016/j.asr.2012.09.029

  13. M. Aguilar et al. (AMS Collab.), Phys. Rev. Lett. 114, 171103 (2015). https://doi.org/;10.1103/PhysRevLett.114.171103

    Article  ADS  Google Scholar 

  14. M. Aguilar et al. (AMS Collab.), Phys. Rev. Lett. 114, 171103 (2015). https://doi.org/10.1103/PhysRevLett.114.171103; Phys. Rev. Lett. 115, 211101 (2015). https://doi.org/10.1103/PhysRevLett.115.211101

  15. M. Aguilar et al. (AMS Collab.), Phys. Rev. Lett. 119, 251101 (2017). https://doi.org/;10.1103/PhysRevLett.119.251101

    Article  ADS  Google Scholar 

  16. Phys. Rev. Lett. 120, 021101 (2018). https://doi.org/10.1103/PhysRevLett.120.021101; https://doi.org/10.1103/PhysRevLett.124.211102;10.1103/PhysRevLett.120.021101

  17. M. Aguilar et al. (AMS Collab.), Phys. Rev. Lett. 119, 251101 (2017). https://doi.org/10.1103/PhysRevLett.119.251101; Phys. Rev. Lett. 120, 021101 (2018). https://doi.org/10.1103/PhysRevLett.120.021101; https://doi.org/10.1103/PhysRevLett.124.211102; Phys. Rev. Lett. 126, 041104 (2021). https://doi.org/10.1103/PhysRevLett.126.041104

  18. O. Adriani et al. (CALET Collab.), Phys. Rev. Lett. 122, 181102 (2019). https://doi.org/10.1103/PhysRevLett.122.181102

    Article  ADS  Google Scholar 

  19. A. D. Panov et al. (ATIC Collab.), Bull. Russ. Acad. Sci.: Phys. 73, 564 (2009). https://doi.org/10.3103/S1062873809050098

    Article  Google Scholar 

  20. H. S. Ahn et al. (CREAM Collab.), Astrophys. J. Lett. 714, L89 (2010). https://doi.org/;10.1088/2041-8205/714/1/L89

    Article  ADS  Google Scholar 

  21. H. S. Ahn et al. (CREAM Collab.), Astrophys. J. Lett. 714, L89 (2010). https://doi.org/10.1088/2041-8205/714/1/L89; Y. S. Yoon et al. (CREAM Collab.), Astrophys. J. 839, 5 (2017). https://doi.org/10.3847/1538-4357/aa68e4

    Article  ADS  Google Scholar 

  22. E. Atkin et al. (NUCLEON Collab.), J. Cosmol. Astropart. Phys., 2017, 020 (2017). https://doi.org/10.1088/1475-7516/2017/07/020

  23. F. Alemanno et al., PoS (ICRC2021), 117 (2021). https://doi.org/10.22323/1.395.0117

  24. L. Wu et al., PoS (ICRC2021), 128 (2021). https://doi.org/10.22323/1.395.0128

  25. Z. Xu et al., PoS (ICRC2021), 115 (2021). https://doi.org/10.22323/1.395.0115

  26. C. Yue et al., PoS (ICRC2021), 126 (2021). https://doi.org/10.22323/1.395.0126

  27. E. Atkin et al. (NUCLEON Collab.), JETP Lett. 108, 5–12 (2018). https://doi.org/10.1134/S0021364018130015

    Article  ADS  Google Scholar 

  28. B. Bartoli et al. (ARGO-YBJ Collab. and LHAASO Collab.), Phys. Rev. D 92, 092005 (2015). https://doi/10.1103/PhysRevD.92.092005

    Article  ADS  Google Scholar 

  29. J. C. Arteaga-Velázquez and J. D. Álvarez, PoS (ICRC2019), 176 (2019); arXiv: 1908.11519

  30. K.-H. Kampert et al., Acta Phys. Polon. B 35, 1799 (2004).

    ADS  Google Scholar 

  31. A. D. Panov et al., in Proceedings of the 30th International Cosmic Ray Conference (2008), Vol. 2, p. 3; arXiv: 0707.4415v1

  32. H. S. Ahn et al., Astropart. Phys. 30, 133 (2008). https://doi.org/10.1016/j.astropartphys.2008.07.010

    Article  ADS  Google Scholar 

  33. O. Adriani et al., Astrophys. J. 791, 93 (2014). https://doi.org/10.1088/0004-637x/791/2/93

    Article  ADS  Google Scholar 

  34. M. Aguilar et al. (AMS Collab.), Phys. Rev. Lett. 117, 231102 (2016). https://doi/10.1103/PhysRevLett.117. 231102

Download references

Funding

The DAMPE mission was funded by the strategic priority science and technology projects in space science of Chinese Academy of Sciences. In China the data analysis is supported by the National Key Research and Development Program of China(project no. 2016YFA0400200), the National Natural Science Foundation of China (project nos. 11921003, 11622327, 11722328, 11851305, U1738205, U1738206, U1738207, U1738208, and U1738127), the strategic priority science and technology projects of Chinese Academy of Sciences (project no. XDA15051100), the 100 Talents Program of Chinese Academy of Sciences, the Young Elite Scientists Sponsorship Program by CAST (project no. YESS20160196), and the Program for Innovative Talents and Entrepreneur in Jiangsu. In Europe the activities and data analysis are supported by the Swiss National Science Foundation (SNSF), Switzerland, the National Institute for Nuclear Physics (INFN), Italy, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project no. 851103).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Francesca Alemanno.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alemanno, F., on Behalf of the DAMPE Collaboration. The DAMPE Space Mission: Status and Main Results. Moscow Univ. Phys. 77, 280–283 (2022). https://doi.org/10.3103/S0027134922020060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134922020060

Keywords:

Navigation