Skip to main content
Log in

Physical Basics of Neuroaesthetics

  • Optics and Spectroscopy. Laser Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The field of neuroaesthetics, which allows description of the beauty of fractals, has been considered in this work. The arguments for the concept of selection of the spatial frequencies of fractal images in the brain cortex have been discussed. Special attention has been paid to the stability of the scaling parameter of a fractal and its Fourier transform, indicating the ability for rapid optical signal processing in particular brain sites. Rapid Fourier processing of visual signals makes one feel comfortable and causes the sense of beauty when contemplating a fractal object. The results of this study enable one to explain the efficiency of visual art therapy in medicine from the physical viewpoint, as well as to give a physical interpretation to some statements of modern aesthetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-O. Peitgen and P. H. Richter, The Beauty of Fractals: Images of Complex Dynamical Systems (Springer, 1986).

  2. Beauty and the Brain: Biological Aspects of Aesthetics, Ed. by I. Rentschler, B. Herzberger, and D. Epstein (Birkhäuser Verlag, 1988).

  3. A. N. Bogolyubov, A. A. Petukhov, and N. E. Shapkina, Moscow Univ. Phys. Bull. 66, 122 (2011). https://doi.org/10.3103/S0027134911020044

    Article  ADS  Google Scholar 

  4. D. D. Ruzhitskaya, S. B. Ryzhikov, and Yu. V. Ryzhikova, Moscow Univ. Phys. Bull. 73, 306 (2018). https://doi.org/10.3103/S0027134918030165

    Article  ADS  Google Scholar 

  5. N. Street, PhD Thesis (Univ. of Liverpool, 2015). https://core.ac.uk/download/pdf/80774376.pdf.

  6. B. Musel, C. Bordier, M. Dojat, C. Pichat, et. al., J. Cognit. Neurosci. 25, 1315 (2013). https://doi.org/10.1162/jocn_a_00397

    Article  Google Scholar 

  7. L. Kauffman, S. Ramanoel, and C. Peirin, Front. Integr. Neurosci. 8, 37 (2014). https://doi.org/10.3389/fnint.2014.00037

    Article  Google Scholar 

  8. I. I. Shoshina, Y. E. Shelepin, E. A. Vershinina, and K. O. Novikova, Hum. Physiol. 41, 251 (2015). https://doi.org/10.7868/S0131164615030157

    Article  Google Scholar 

  9. A. V. Averchenko, P. V. Korolenko, and A. Yu. Mishin, Proc. Progress in Electromagnetic Research Symp., St. Petersburg, Russia, 2017, p. 3418. https://doi.org/10.1109/PIERS.2017.8262351

  10. S. Jessen and T. Grossmann, Front. Hum. Neurosci. 11, 486 (2017). https://doi.org/10.3389/fnhum.2017.00486

    Article  Google Scholar 

  11. S. Gretchen, Environ. Plann. B 30, 297 (2003). https://doi.org/10.1068/b12917

    Article  Google Scholar 

  12. V. V. Gridchina, P. V. Korolenko, and Yu. V. Ryzhikova, Bull. Russ. Acad. Sci.: Phys. 79, 1480 (2015). https://doi.org/10.3103/S1062873815120163

    Article  Google Scholar 

  13. O. M. Vokhnik, A. M. Zotov, P. V. Korolenko, Yu. V. Ryzhikova, Modeling and Processing of Stochastic Signals and Structures (Mosk. Gos. Univ., Moscow, 2013).

    Google Scholar 

  14. A. A. Potapov, Zh Radioelektron, No 1, 1 (2010)

  15. E. L. Albuquerque and M. G. Cottam, Phys. Rep. 376, 225 (2003). https://doi.org/10.1016/S0370-1573(02)00559-8

    Article  ADS  Google Scholar 

  16. P. V. Korolenko, A. Yu. Mishin, and Yu. V. Ryzhikova, J. Opt. Technol. 79, 754 (2012). https://doi.org/10.1364/JOT.79.000754

    Article  Google Scholar 

  17. P. V. Korolenko and N. V. Grushina, Golden Ratio and Self-Similar Structures in Optics (Librokom, Moscow, 2010).

    Google Scholar 

  18. P. V. Korolenko, S. B. Ryzhikov, and Yu. V. Ryzhikova, Phys. Wave Phenom. 21, 256 (2013). https://doi.org/10.3103/S1541308X13040031

    Article  ADS  Google Scholar 

  19. M. F. Barnsley, Fractals Everywhere (Academic, New York, 1988).

    MATH  Google Scholar 

  20. G. Westheimer, Perception 30, 531 (2001). https://doi.org/10.1068/p3193

    Article  Google Scholar 

  21. B. M. Velichkovsky, Cognitive Science: Foundations of Epistemic Psychology (Academia, Moscow, 2006).

    Google Scholar 

  22. B. B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Company, New York, 1977).

    Google Scholar 

  23. B. Spehar, C. W. G. Clifford, B. R. Newell, and R. P. Taylor, Comput. Graphics 27, 813 (2003).

    Article  Google Scholar 

  24. S. D. P’yankova, Psikhol. Issled. 9(46), 12 (2016).

    Google Scholar 

  25. A. A. Kashtanov, P. V. Korolenko, and A. Yu. Mishin, Zdorov’e Obraz. 21 Veke 19(2), 90 (2017).

    Article  Google Scholar 

  26. R. P. Taylor, Leonardo 39, 245 (2006). https://doi.org/10.1162/leon.2006.39.3.245

    Article  Google Scholar 

  27. M. Garousi, Leonardo 45, 26 (2012). https://doi.org/10.1162/LEON-a-00322

    Article  Google Scholar 

Download references

Funding

The parts of this work associated with mathematical modeling of processes and objects were solved with the financial support of the Russian Foundation for Basic Research (project no. 18-01-00723 a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Korolenko.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 6, pp. 51–56.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotov, A.M., Korolenko, P.V., Mishin, A.Y. et al. Physical Basics of Neuroaesthetics. Moscow Univ. Phys. 74, 625–630 (2019). https://doi.org/10.3103/S0027134919060262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919060262

Keywords

Navigation