Skip to main content
Log in

The Electron-Vibrational Interaction in a Thiophene—Phenylene Cooligomer and Its Relationship to the Raman Spectrum

  • Optics and Spectroscopy. Laser Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Electron-vibrational interactions play a key role in limiting charge mobility in organic semi-conductors. This paper reports a theoretical study of the electron—phonon interaction in the 5,5′-diphenyl-2,2′-bitiophene (PTTP) molecule, which belongs to the class of thiophene-phenylene cooligomers, which are of great interest for organic optoelectronics due to their electron-transport and luminescent properties; these results are compared with anthracene, which is a model organic semiconductor. The contributions of various vibrational modes to the reorganization energy of PTTP and the anthracene molecules are revealed and it is shown that these contributions correlate with the intensities of the corresponding bands in the Raman spectrum. In particular, it is found that for the PTTP molecule the so-called I-mode with a frequency of ∼1460 cm−1, which corresponds to collective vibration of atoms of all oligomer units, has the highest intensity in both spectra. These results indicate the promise of Raman spectroscopy for studying electron-vibrational interactions in organic semiconductors. Finally, the mobility of holes in PTTP and anthracene is estimated in the framework of the jump model and the reasons for their difference are analyzed. Based on these results, we propose some ways to reduce the electron-vibrational interaction in thiophene—phenylene cooligomers, which is important for the directional molecular design of organic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, Nat. Mater. 9, 496 (2010).

    Article  ADS  Google Scholar 

  2. S. Hotta and T. Yamao, J. Mater. Chem. 21, 1295 (2011).

    Article  Google Scholar 

  3. S. Z. Bisri, T. Takenobu, Y. Yomogida, H. Shimotani, T. Yamao, S. Hotta, and Y. Iwasa, Adv. Funct. Mater. 19, 1728 (2009).

    Article  Google Scholar 

  4. T. Komori, H. Nakanotani, T. Yasuda, and C. Adachi, J. Mater. Chem. C 2, 4918 (2014).

    Article  Google Scholar 

  5. S. Dokiya, Y. Ono, F. Sasaki, S. Hotta, and H. Yanagi, J. Nanosci. Nanotechnol. 16, 3194 (2016).

    Article  Google Scholar 

  6. H. H. Fang, R. Ding, S. Y. Lu, J. Yang, X. L. Zhang, R. Yang, J. Feng, Q. D. Chen, J.F. Song, and H. B. Sun, Adv. Funct. Mater. 22, 33 (2012).

    Article  Google Scholar 

  7. T. Taniguchi, K. Fukui, R. Asahi, Y. Urabe, A. Ikemoto, J. Nakamoto, Y. Inada, T. Yamao, and S. Hotta, Synth. Met. 227, 156 (2017).

    Article  Google Scholar 

  8. A. Köhler and H. Bässler, Electronic Processes in Organic Semiconductors (Wiley, Weinheim, 2015), Chap. 3. https://doi.org/10.1002/9783527685172.ch3

  9. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).

    Article  Google Scholar 

  10. W.-Q. Deng and W. A. Goddard, J. Phys. Chem. B 108, 8614 (2004).

    Article  Google Scholar 

  11. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brüdas, Chem. Rev. 107, 926 (2007).

    Article  Google Scholar 

  12. Ş. Atahan-Evrenk and A. Aspuru-Guzik, in Prediction and Calculation of Crystal Structures: Methods and Applications, Ed. by S. Atahan-Evrenk and A. Aspuru-Guzik (Springer, Cham, 2014), p. 95. https://doi.org/10.1007/128_2013_526

    Google Scholar 

  13. V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T. G. Bill, and J. L. Bredas, Phys. Rev. Lett. 89, 275503 (2002).

    Article  ADS  Google Scholar 

  14. A. Yu. Sosorev, I. Yu. Chernyshov, D. Yu. Paraschuk, and M. V. Vener, in Molecular Spectroscopy, Ed. by Y. Ozaki, M. J. Wójcik, and J. Popp (Wiley, Weinheim, 2019), Chap. 15. https://doi.org/10.1002/9783527814596.ch15

  15. A. B. Myers, Chem. Rev. 96, 911 (1996).

    Article  Google Scholar 

  16. D. Pedron, A. Speghini, V. Mulloni, and R. Bozio, J. Chem. Phys. 103, 2795 (1995).

    Article  ADS  Google Scholar 

  17. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).

    Article  Google Scholar 

  18. M. S. Gordon and M. W. Schmidt, in Theory and Applications of Computational Chemistry. The First Forty Years, Ed. by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, 2005), p. 1167.

  19. J. P. Merrick, D. Moran, and L. Radom, J. Phys. Chem. A 111, 11683 (2007).

    Article  Google Scholar 

  20. B. Baumeier, J. Kirkpatrick, and D. Andrienko, Phys. Chem. Chem. Phys. 12, 11103 (2010).

    Article  Google Scholar 

  21. J. Kirkpatrick, Int. J. Quantum Chem. 108, 51 (2008).

    Article  ADS  Google Scholar 

  22. O. Ostroverkhova, Chem. Rev. 116, 13279 (2016).

    Article  Google Scholar 

  23. A. Y. Sosorev, M. K. Nuraliev, E. V. Feldman, D. R. Maslennikov, O. V. Borshchev, M. S. Skorotetcky, N. M. Surin, M. S. Kazantsev, S. A. Ponomarenko, and D. Y. Paraschuk, Phys. Chem. Chem. Phys. 21, 11578 (2019).

    Article  Google Scholar 

  24. P. Kowalska, J. R. Cheeseman, K. Razmkhah, B. Green, L. A. Nafie, and A. Rodger, Anal. Chem. 84, 1394 (2011).

    Article  Google Scholar 

  25. B. Tian and G. Zerbi, J. Chem. Phys. 92, 3892 (1990).

    Article  ADS  Google Scholar 

  26. J.-C. Florès, M.-A. Lacour, X. Sallenave, F. Serein-Spirau, J.-P. Lere-Porte, J. J. E. Moreau, K. Miqueu, J.-M. Sotiropoulos, and D. Flot, Chem.: Eur. J. 19, 7532 (2013).

    Article  Google Scholar 

  27. I. P. Koskin, E. A. Mostovich, E. Benassi, and M. S. Kazantsev, J. Phys. Chem. C 121, 23359 (2017).

    Article  Google Scholar 

  28. S. A. Lee, S. Hotta, and F. Nakanishi, J. Phys. Chem. A 104, 1827 (2000).

    Article  Google Scholar 

Download references

Acknowledgments

The author expresses gratitude to Prof. D.Yu. Parashchuk for discussions and useful recommendations.

Funding

Calculations for PTTP were performed with the financial support of the Russian Foundation for Basic Research (grant no. 16-32-60204_mol_a_dk). Calculations for anthracene were performed with the financial support of the Russian Science Foundation (grant no. 18-72-10165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Sosorev.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 6, pp. 64–70.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosorev, A.Y. The Electron-Vibrational Interaction in a Thiophene—Phenylene Cooligomer and Its Relationship to the Raman Spectrum. Moscow Univ. Phys. 74, 639–645 (2019). https://doi.org/10.3103/S0027134919060250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919060250

Keywords

Navigation