Skip to main content
Log in

Application of a Passive Acoustic Method for Detection and Estimation of Shallow-Water Bubble Gas Emissions

  • Physics of Earth, Atmosphere, and Hydrosphere
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

A passive acoustic method for estimating the flow of underwater bubble gas emissions for shallow water areas has been proposed and tested. The method is based on the connection between the frequency of the acoustic signal produced by a gas bubble when it separates from the underwater outlet channel and the size of the bubble. In the conducted laboratory experiments acoustic signals with frequencies in the range from 2.7 to 0.4 kHz were recorded during generation of bubbles with a size from 2 to 15 mm within the fluid. The analysis of acoustic recordings made near existing shallow-water seeps in Laspi Bay showed a series of short audio signals produced by the released methane bubbles of 0.5–2s duration, grouped into packages containing approximately ten pulses. For the two investigated seeps, the frequency peaked at 1 and 1.4 kHz. According to a theoretical estimate, the bubbles generating such a signal are 7 and 5 mm in diameter, respectively. Taking the intensity of the bubble discharge into account, the calculated gas flows were 40 and 6 liters per day, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Egorov, Yu. G. Artemov, and S. B. Gulin, Methane Seeps in the Black Sea: Environment-Forming and Ecological Roles, Ed. by G. G. Polikarpov (EKOSI-Gidrofizika, Sevastopol’, 2011).

  2. A. Yu. Lein and M. V. Ivanov, Biochemical Cycle of Methane in the Ocean (Nauka, Moscow, 2009).

    Google Scholar 

  3. V. G. Bondur and T. V. Kuznetsova, in Aerospace Monitoring of Oil and Gas Industry Facilities, Ed. by V. G. Bondur (Nauchnyi Mir, Moscow, 2012), p. 272.

  4. L. Dimitrov, Cont. Shelf Res. 22, 2429 (2002).

    Article  ADS  Google Scholar 

  5. G. I. Tkeshelashvili, V. N. Egorov, Sh. A. Mestvirishvili, G. Sh. Parkhaladze, M. B. Gulin, S. B. Gulin, and Yu. G. Artemov, Geochem. Int. 35, 284 (1997).

    Google Scholar 

  6. A. A. Pasynkov, E. P. Tikhonenkov, and Yu. V. Smagin, Geol. Polezn. Iskop. Mirovogo Okeana, No. 1, 77 (2009).

  7. M. Römer, H. Sahling, T. Pape, et al., Mar. Geol. 319–322, 57 (2012).

    Article  ADS  Google Scholar 

  8. I. Leifer, J. R. Boles, B. P. Luyendyk, and J. F. Clark, Environ. Geol. 46, 1038 (2004).

    Article  Google Scholar 

  9. Yu. G. Artemov, Candidate’s Dissertation in Geography (Kovalevsky Inst. of Biology of the Southern Seas, Sevastopol’, 2014).

    Google Scholar 

  10. A. Vazquez, R. Manasseh, and R. Chicharro, Chem. Eng. Sci. 131, 187 (2015).

    Article  Google Scholar 

  11. R. P. Dziak et al., Deep Sea Res., Part II 150, 210 (2018).

    Article  Google Scholar 

  12. G. Marinaro, G. Etiope, N. L. Bue, P. Favali, et al., Geo-Mar. Lett. 26, 297 (2006).

    Article  ADS  Google Scholar 

  13. S. M. Wiggins, I. Leifer, P. Linke, and J. A. Hildebrand, Mar. Pet. Geol. 68, 776 (2015).

    Article  Google Scholar 

  14. M. Minnaert, Philos. Mag. 16, 235 (1933).

    Article  Google Scholar 

  15. H. P. Johnson, U. K. Miller, M. S. Salmi, and E. A. Solomon, Geochem. Geophys. Geosyst. 16, 3825 (2015). https://doi.org/10.1002/2015GC005955

    Article  ADS  Google Scholar 

  16. J. Schneider von Deimling et al., Limnol. Oceanogr.: Methods 8, 155 (2010). https://doi.org/10.4319/lom.2010.8.155

    Article  Google Scholar 

  17. M. M. Makarov, Candidate’s Dissertation in Geography (Limnological Inst., Siberian Branch, Russ. Acad. Sci., Irkutsk, 2016).

    Google Scholar 

  18. T. V. Malakhova, T. A. Kanapatskii, V. N. Egorov, L. V. Malakhova, Yu. G. Artemov, D. B. Evtushenko, S. B. Gulin, and N. V. Pimenov, Microbiology 84, 838 (2015).

    Article  Google Scholar 

  19. B. I. Samolyubov, I. N. Ivanova, A. A. Budnikov, and A. I. Tsvetkov, Moscow Univ. Phys. Bull. 70, 536 (2015). doi https://doi.org/10.3103/S0027134915060168

    Article  ADS  Google Scholar 

  20. A. O. Maksimov, B. A. Burov, and A. S. Salomatin, Podvodnye Issled. Robototekh., No. 2, 49 (2016).

  21. I. E. Karaichev, in Proc. 3rd Int. Conf. “Progress in Engineering Sciences in the Modern World,” Voronezh, Russia, 2016, p. 91.

  22. S. M. Gorskii, A. Yu. Zinov’ev, and P. K. Chichagov, Akust. Zh. 34, 1024 (1988).

    Google Scholar 

Download references

Funding

This work was carried out within the state assignment Molismological and biogeochemical foundations of marine ecosystems homeostasis of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS (state registration number AAAA-A18-118020890090-2) and supported by Russian Foundation for Basic Research (project No. No18-45-920057 p_a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Budnikov, T. V. Malakhova or I. N. Ivanova.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 6, pp. 106–112.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budnikov, A.A., Malakhova, T.V., Ivanova, I.N. et al. Application of a Passive Acoustic Method for Detection and Estimation of Shallow-Water Bubble Gas Emissions. Moscow Univ. Phys. 74, 690–696 (2019). https://doi.org/10.3103/S0027134919060109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919060109

Keywords

Navigation