Skip to main content
Log in

On the Measurement of the Ratio of the Gravitational and Inertial Masses of an Electron

  • The Physics of the Atomic Nucleus and Elementary Particles
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The motion of an electron in an experiment similar to that of Witteborn–Fairbank is discussed. It is demonstrated that the gravitational force acting on an electron is not compensated by the Barnhill–Schiff force and the acceleration acquired by it in the gravitational field of the Earth is proportional to the ratio of its passive gravitational mass to the inertial mass only if this electron is weakly relativistic or relativistic. Therefore, experiments with relativistic or weakly relativistic electrons are needed in order to measure this ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aad et al., Phys. Rev. D 86, 032003 (2012).

    Article  ADS  Google Scholar 

  2. F. C. Witteborn and W. M. Fairbank, Phys. Rev. Lett. 19, 1049 (1967).

    Article  ADS  Google Scholar 

  3. J. W. T. Dabbs et al., Phys. Rev. B 139, 756 (1965).

    Article  Google Scholar 

  4. A. W. Overhauser and R. Colella, Phys. Rev. Lett. 33, 1237 (1974).

    Article  ADS  Google Scholar 

  5. R. Colella, A. W. Overhauser, and S. A. Werner, Phys. Rev. Lett. 34, 1742 (1975).

    Article  Google Scholar 

  6. J. M. Daniels and W.-T. Ni, Mod. Phys. Lett. A 06, 659 (1991).

    Article  ADS  Google Scholar 

  7. A. Einstein, Collected Papers: Works on the Relativity Theory, 1905–1920, Ed. by I. E. Tamm, Ya. A. Smorodinskii, and B. G. Kuznetsov (Nauka, Moscow, 1965).

  8. M. J. Longo, Phys. Rev. Lett. 60, 173 (1988).

    Article  ADS  Google Scholar 

  9. L. M. Krauss and S. Tremaine, Phys. Rev. Lett. 60, 176 (1988).

    Article  ADS  Google Scholar 

  10. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1989).

    Google Scholar 

  11. V. I. Denisov, I. P. Denisova, and S. I. Svertilov, Theor. Math. Phys. 135, 720 (2003).

    Article  Google Scholar 

  12. V. I. Denisov, V. A. Sokolov, and M. I. Vasili’ev, Phys. Rev. D 90, 023011 (2014).

    Article  ADS  Google Scholar 

  13. V. I. Denisov, E. E. Dolgaya, V. A. Sokolov, and I. P. Denisova, Phys. Rev. D 96, 036008 (2017).

    Article  ADS  Google Scholar 

  14. V. I. Denisov, V. A. Sokolov, and S. I. Svertilov, J. Cosmol. Astropart. Phys., No. 09, 004 (2017).

  15. V. I. Denisov, E. E. Dolgaya, and V. A. Sokolov, J. High Energy Phys., No. 5, 105 (2017).

  16. M. I. Vasili’ev, V. I. Denisov, A. V. Kozar, and P. A. Tomasi-Vshivtseva, Moscow Univ. Phys. Bull. 72, 513 (2017). https://doi.org/10.3103/S0027134917060169.

    Article  ADS  Google Scholar 

  17. M. I. Vasili’ev, M. G. Gapochka, I. P. Denisova, and O. V. Kechkin, Moscow Univ. Phys. Bull. 73, 457 (2018). https://doi.org/10.3103/S002713491805017X.

    Article  ADS  Google Scholar 

  18. X.-F. Wu et al., Phys. Rev. D 95, 103004 (2017).

    Article  ADS  Google Scholar 

  19. Y.-P. Yang and B. Zhang, Phys. Rev. D 94, 101501 (2016).

    Article  ADS  Google Scholar 

  20. L. K. Wong and A.-C. Davis, Phys. Rev. D 95, 104010 (2017).

    Article  ADS  Google Scholar 

  21. V. I. Denisov and M. I. Denisov, Phys. Rev. D 60, 047301 (1999).

    Article  ADS  Google Scholar 

  22. J. Weber, in Gravitational Measurements, Fundamental Metrology and Constants, Ed. by V. De Sabbata and V. N. Melnikov (Kluwer Academic, 1988), p. 467.

  23. V. I. Denisov, I. P. Denisova, and S. I. Svertilov, Theor. Math. Phys. 138, 142 (2004).

    Article  Google Scholar 

  24. L. I. Schiff and M. V. Barnhill, Phys. Rev. 151, 1067 (1966).

    Article  ADS  Google Scholar 

  25. H. Bondi, Rev. Mod. Phys. 29, 423 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  26. T. W. Darling et al., Rev. Mod. Phys. 64, 237 (1992).

    Article  ADS  Google Scholar 

  27. A. F. Korolev and N. N. Koshelev, Moscow Univ. Phys. Bull. 73, 168 (2018). https://doi.org/10.3103/S0027134918020091.

    Article  ADS  Google Scholar 

  28. V. I. Denisov et al., Mod. Phys. Lett. A 33, 1850192 (2018).

    Article  ADS  Google Scholar 

  29. N. Rosen, Ann. Phys. 22, 1 (1963).

    Article  ADS  Google Scholar 

  30. P. G. Freund, A. Maheshwari, and E. Schonberg, Astrophys. J. 157, 857 (1969).

    Article  ADS  Google Scholar 

  31. Yu. V. Gratsand A. B. Lavrent’ev, Russ. Phys. J. 37, 889 (1994).

    Article  Google Scholar 

  32. S. V. Babak and L. P. Grishchuk, Phys. Rev D 61, 024038 (1999).

    Article  ADS  Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1988).

    MATH  Google Scholar 

  34. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Denisova.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 4, pp. 28–31.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gapochka, M.G., Denisova, I.P., Korolev, A.F. et al. On the Measurement of the Ratio of the Gravitational and Inertial Masses of an Electron. Moscow Univ. Phys. 74, 337–340 (2019). https://doi.org/10.3103/S0027134919030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919030044

Keywords

Navigation