Skip to main content
Log in

The Effects of Small Contaminants on the Formation of Structures during Rayleigh–Bénard–Marangoni Convection in a Planar Liquid Layer

  • CHEMICAL PHYSICS, PHYSICAL KINETICS, AND PLASMA PHYSICS
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

It is shown that convective structures that form upon heating a planar liquid layer from below are determined not only by standard similarity parameters, such as the Prandtl, Rayleigh, and Marangoni numbers, but also by the presence or absence of an elastic film on the surface of the liquid, which occurs because of impurities and stabilizes the surface. The level of impurities contained in distilled water is enough to prevent Marangoni convection, and only additional purification (deionization) of water allows one to induce the thermocapillary effect. Using the method of infrared surface thermography, the mean size of thermal structures that emerge on the surface in different liquids at different temperatures and layer thicknesses is determined. A convection theory that takes the impurities in the linear and nonlinear approximations into account is examined and good compliance of the theoretical calculations with the experimental data obtained in the present work is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. E. Wesfreid, C. R. Mec. 345, 446 (2017). http://dx.doi.org/10.1016/j.crme.2017.06.006

    Article  ADS  Google Scholar 

  2. D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd ed. (Wiley, 2015).

    MATH  Google Scholar 

  3. O. Lehmann, Molekularphysik (Wilhelm Engelmann, Leipzig, 1920).

    Google Scholar 

  4. J. Thompson, Proc. R. Philos. Soc. Glasgow 13, 464 (1882).

  5. D. A. Nield, J. Fluid Mech. 19, 341 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961).

    MATH  Google Scholar 

  7. F. H. Busse, Rep. Prog. Phys. 41, 1929 (1978).

    Article  ADS  Google Scholar 

  8. E. L. Koschmieder, Bénard Cells and Taylor Vortices (Cambridge Univ. Press, 1993).

    MATH  Google Scholar 

  9. G. Z. Gershuni and E. M. Zhukhovitsky, Convective Stability of Incompressible Fluid (Nauka, Moscow, 1972; Keter, Jerusalem, 1976).

  10. M. F. Schatz and G. P. Neitzel, Annu. Rev. Fluid Mech. 33, 93 (2001).

    Article  ADS  Google Scholar 

  11. M. F. Schatz and K. Howden, Exp. Fluids 19, 359 (1995).

    Article  Google Scholar 

  12. W. G. Spagenberg and W. R. Rowland, Phys. Fluids 4, 743 (1961).

    Article  ADS  Google Scholar 

  13. J. R. Saylor, G. B. Smith, and K. A. Flack, Phys. Fluids 13, 428 (2001).

    Article  ADS  Google Scholar 

  14. Yu. Kito, A. Askounis, M. Kohno, et al., Appl. Phys. Lett. 109, 171602 (2016). doi 10.1063/1.4966542

    Article  ADS  Google Scholar 

  15. Yu. Yu. Plaksina, A. V. Uvarov, N. A. Vinnichenko, and V. B. Lapshin, Russ. J. Earth Sci. 12, ES4002 (2012). doi 10.2205/2012ES000517

    Article  Google Scholar 

  16. N. A. Vinnichenko, A. V. Uvarov, and Yu. Yu. Plaksina, Exp. Therm. Fluid Sci. 59, 238 (2014).

    Article  Google Scholar 

  17. A. V. Getling, Rayleigh–Bénard Convection: Structures and Dynamics (World Sci., 1998)

  18. J. C. Berg and A. Acrivos, Chem. Eng. Sci. 20, 737 (1965).

    Article  Google Scholar 

  19. K. N. Fedorov and A. I. Ginzburg, Near-Surface Ocean Layer (Gidrometeoizdat, Moscow, 1988).

    Google Scholar 

  20. J. Zhang, S. Childress, and A. Libchaber, Phys. Fluids 9, 1034 (1997). doi 10.1063/1.869198

    Article  ADS  MathSciNet  Google Scholar 

  21. E. M. Sparrow, R. J. Goldstein, and V. K. Jonsson, J. Fluid Mech. 18, 513 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  22. L. Butzhammer and W. Köhler, Microfluid. Nanofluid. 21, 155 (2017). doi 10.1007/s10404-017-1992-6

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 15-0803049). Equipment purchased by the Program for Development of Moscow State University was used in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Plaksina.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaksina, Y.Y., Pushtaev, A.V., Vinnichenko, N.A. et al. The Effects of Small Contaminants on the Formation of Structures during Rayleigh–Bénard–Marangoni Convection in a Planar Liquid Layer. Moscow Univ. Phys. 73, 513–519 (2018). https://doi.org/10.3103/S0027134918050156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918050156

Keywords:

Navigation