Skip to main content
Log in

Mathematical Methods of Subjective Modeling in Scientific Research. 2: Applications

  • Theoretical and Mathematical Physics (Review)
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

This article considers applications of the formalism of subjective modeling proposed in [36], based on modeling of uncertainty reflecting unreliability of subjective information and fuzziness common of its content. A subjective model of probabilistic randomness is defined and studied. It is shown that a researcher–modeler (RM) defines a subjective model of a discrete probability space as a space with plausibility and believability that de facto turns out to be a subjective model of the class of subjectively equivalent probability spaces that model an arbitrary evolving stochastic object, and the same space with plausibility and believability is its subjective model. This enables us to empirically recover a subjective model of an evolving stochastic object accurately and using a finite number of event observations, while its probabilistic model cannot be empirically recovered. A similar connection is established between equivalence classes of plausibility and believability distributions and classes of subjectively equivalent absolutely continuous probability densities. For two versions of plausibility and believability measures, entropies of plausibility and believability distributions of the values of an uncertain element (UCE) \(\tilde x\) that model RM’s subjective judgments as characteristics of the information content and uncertainty of his judgments are considered. It is shown that in the first version entropies have properties that are formally similar to those of Shannon entropy but due to absence of the law of large numbers (LLN) their interpretation fundamentally differs from the interpretation of Shannon entropy. In the third version there is an analog of the LLN, and its connection to the Shannon entropy was obtained for the expected value of subjective informational content/uncertainty. A subjective model M(\(\tilde x\) )=(Ω,3(Ω), P ζ,ϰ (·,·;\(\tilde x\) ), N ζ,ϰ (·,·;\(\tilde x\) ) of an uncertain fuzzy element is considered, and an optimal subjective rule of identification of its states using observation data is obtained and studied. Methods of expert-aided reconstruction of fuzzy and uncertain fuzzy element models are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 72, 1 (2017). https://doi.org/10.3103/S002713491701012X

    Article  ADS  Google Scholar 

  2. Yu. P. Pyt’ev, Math. Models Comput. Simul. 5, 538 (2013). doi doi 10.1134/S2070048213060094

    Article  MathSciNet  Google Scholar 

  3. Yu. P. Pyt’ev, Possibility as an Alternative to Probability, 2nd ed. (Fizmatlit, Moscow, 2016).

    Google Scholar 

  4. Yu. P. Pyt’ev, Intellekt. Sist. 11, 277 (2007).

    MathSciNet  Google Scholar 

  5. A. L. Tulup’ev, S. I. Nikolenko, and A. V. Sirotkin, Bayesian Networks: A Logical-and-Probabilistic Approach (Nauka, St. Petersburg, 2006).

    MATH  Google Scholar 

  6. A. Josang and R. Hankin, in Proc. 15th Int. Conf. on Information Fusion, Singapore, 2012, p. 1225.

  7. A. M. Mironov, Intellekt. Sist. 11, 201 (2007).

    Google Scholar 

  8. Applied Fuzzy Systems, Ed. by T. Terano, K. Asai, and M. Sugeno (Elsevier, 1989).

  9. Fuzzy Sets and Possibility Theory. Recent Developments, Ed. by P. P. Yager (Pergamon Press, 1982).

  10. D. A. Balakin, Yu. M. Nagornyi, and Yu. P. Pyt’ev, in Proc. Int. Conf. “Infinite-Dimensional Analysis, Stochastics, and Mathematical Modeling: New Problems and Methods,” Moscow, Russia, 2014, p.184.

  11. V. Bhavsar and A. M. Mironov, in Proc. Workshop on Multi-Valued Logic Programming and Applications, Seattle, WA, 2006, p.73.

  12. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter, Probabilistic Networks and Expert Systems (Springer, New York, 1999).

    MATH  Google Scholar 

  13. G. Shafer, A Mathematical Theory of Evidence (Princeton Univ. Press, 1976).

    MATH  Google Scholar 

  14. A. Josang, in Proc. 11th Workshop on Preferences and Soft Constraints, Perugia, Italy, 2011. https://doi.org/home.ifi.uio.no/josang/papers/Jos2011-SofT.pdf.

  15. S. S. Stevens, Psychophysics (Wiley, New York, 1975).

    Google Scholar 

  16. A. A. Josang, Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 9, 279 (2001).

    Article  MathSciNet  Google Scholar 

  17. G. J. Klir, Uncertainty and Information: Foundations of Generalized Information Theory (Wiley, Hoboken, 2006).

    MATH  Google Scholar 

  18. E. T. Jaynes, IEEE Trans. Syst. Sci. Cybern. 4, 227 (1968).

    Article  Google Scholar 

  19. H. Jeffreys, Proc. R. Soc. London A 186, 453 (1946).

    Article  ADS  Google Scholar 

  20. L. Zadeh, AI Mag. 7, 85 (1986).

    Google Scholar 

  21. P. Wang, in Proc. 10th Conf. on Uncertainty in Artifical Intelligence, Seattle, United States, 1994, p.560.

  22. R. R. Yager, Inf. Sci. 41, 93 (1987).

    Article  Google Scholar 

  23. T. Inagaki, IEEE Trans. Reliab. 40, 182 (1991).

    Article  Google Scholar 

  24. D. Dubois and H. Prade, in Reliability Data Collection and Analysis, Ed. by J. Flamm and T. Luisi (Springer, 1992), p.213.

  25. F. Smarandache, Int. J. Appl. Math. Stat. 2, 1 (2004).

    Google Scholar 

  26. M. A. Klopotek and S.T. Wierzchon, in Belief Functions in Business Decisions, Ed. by R. P. Strivastava and T. J. Mock, (Physica-Verlag, Heidelberg, 2002), p.62.

  27. D. A. Balakin, B. I. Volkov, E. G. Elenina, A. S. Kuznetsov, and Yu. P. Pyt’ev, Intellekt. Sist. 18, 33 (2014).

    MathSciNet  Google Scholar 

  28. B. MacMillan, Ann. Math. Stat. 24, 196 (1953).

    Article  Google Scholar 

  29. Yu. P. Pyt’ev and I. A. Shishmarev, Probability Theory, Mathematical Statistics, and Elements of Possibility Theory for Physicists (Mosk. Gos. Univ., Moscow, 2010).

    Google Scholar 

  30. D. Dubois, H. T. Nguyen, and H. Prade, in Fundamentals of Fuzzy Sets, Ed. by D. Dubois and H. Prade (Kluwer Academic, Boston, 2000), p.343.

  31. S. Guiasu, Information Theory with Applications (McGraw-Hill, New York, 1977).

    MATH  Google Scholar 

  32. Yu. P. Pyt’ev and R. S. Zhivotnikov, Intellekt. Sist. 6, 63 (2002).

    Google Scholar 

  33. R. R. Yager, Fuzzy Sets Syst. 50, 279 (1992).

    Article  Google Scholar 

  34. H. E. Kyburg, Jr., and H. E. Smokler, Studies in Subjective Probability (Wiley, New York, 1964).

    MATH  Google Scholar 

  35. L. J. Savage, The Foundations of Statistics (Wiley, New York, 1954).

    MATH  Google Scholar 

  36. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 73, 1 (2018). doi 10.3103/S0027134918010125.

    Article  ADS  Google Scholar 

  37. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 72, 113 (2017). https://doi.org/10.3103/S0027134917010131

    Article  ADS  Google Scholar 

  38. Yu. P. Pyt’ev, Methods for Mathematical Modeling of Measuring and Computing Systems, 3rd ed. (Fizmatlit, Moscow, 2012).

    Google Scholar 

  39. Yu. P. Pyt’ev, Probability, Possibility, and Subjective Modeling in Scientific Research. Mathematical and Empirical Foundations, Applications (Fizmatlit, Moscow, 2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Pyt’ev.

Additional information

Original Russian Text © Yu.P. Pyt’ev, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2018, No. 2, pp. 3–17.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyt’ev, Y.P. Mathematical Methods of Subjective Modeling in Scientific Research. 2: Applications. Moscow Univ. Phys. 73, 125–140 (2018). https://doi.org/10.3103/S0027134918020145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918020145

Keywords

Navigation