Skip to main content
Log in

Exploring the Influence of a Focusing and Gaussian Profile Electron Beam in SEM Imaging through Monte Carlo Simulation

  • Condensed Matter Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Gaussian profile is conventionally assumed as the probe shape of the incident electron beam in theoretical analysis of dimensional measurements by a scanning electron microscope (SEM). However, it is not suitable for samples with small and tiny structure. In this paper, a model of a focusing electron beam with finite width due to aberration was used in simulating the SEM image of gold particles/balls on a carbon substrate. An effective electron beam shape (EEBS) was displayed and was found that it deviates significantly from the Gaussian profile. The difference between images simulated by Monte Carlo method with ideal electron incident beam, electron beam focusing model and with ideal beam incident then convoluted by Gaussian profile were discussed in detail. Furthermore, the influence of external electric field effect: full extraction and no extraction for imaging were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Wang, K. K. Seet, R. Fukaya, Y. Kadowaki, N. Arai, M. Ezumi, and H. Satoh, Proc. SPIE 6730, 67304T (2007).

    Article  ADS  Google Scholar 

  2. P. Zhang, S. F. Mao, Z. M. Zhang, and Z. J. Ding, Proc. SPIE 8729, 87290K (2013).

    Article  ADS  Google Scholar 

  3. P. Zhang, S. F. Mao, and Z. J. Ding, Eur. Phys. J. Appl. Phys. 69, 30703 (2015).

    Article  ADS  Google Scholar 

  4. https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2007/ERM.pdf

  5. P. Zhang, H. Y. Wang, Y. G. Li, S. F. Mao, and Z. J. Ding, Scanning 34, 145 (2012).

    Article  Google Scholar 

  6. M. Tanaka, J. S. Villarrubia, and A. E. Vladar, Proc. SPIE 5752, 144 (2005).

    Article  ADS  Google Scholar 

  7. M. Tanaka, C. Shishido, and H. Kawada, Proc. SPIE 6152, 61523Z (2006).

    Article  ADS  Google Scholar 

  8. C. Shishido, R. Nakagaki, M. Tanaka, Y. Takagi, H. Morokuma, O. Komuro, and H. Mori, Proc. SPIE 5038, 1071 (2003).

    Article  ADS  Google Scholar 

  9. R. Attota, R. Silver, and R. Dixson, Appl. Opt. 47, 495 (2008).

    Article  ADS  Google Scholar 

  10. C. Wang, J. Meinhardt, and P. Loebmann, J. Sol-Gel Sci. Technol. 53, 148 (2010).

    Article  Google Scholar 

  11. M. Daneshpanah, G. Abramovich, K. Harding, and A. Vemury, Proc. SPIE 8043, 80430G (2011).

    Article  ADS  Google Scholar 

  12. T. Prill and K. Schladita, Scanning 35, 189 (2013).

    Article  Google Scholar 

  13. Z. Ruan, S. F. Mao, P. Zhang, H. M. Li, and Z. J. Ding, Proc. SPIE 8729, 87290J (2013).

    Article  ADS  Google Scholar 

  14. C. G. Frase, D. Gnieser, and H. Bosse, J. Phys. D: Appl. Phys. 42, 183001 (2009).

    Article  ADS  Google Scholar 

  15. N. W. M. Ritchie, Surf. Interface Anal. 37, 1006 (2005).

    Article  Google Scholar 

  16. A. Seeger, C. Fretzagias, and R. Taylor, Scanning 25, 264 (2003).

    Article  Google Scholar 

  17. H. Yan, M. M. El Gomati, et al., Scanning 20, 465 (1998).

    Article  Google Scholar 

  18. J. R. Lowney, Scanning 17, 301 (1996).

    Google Scholar 

  19. J. R. Lowney, Scanning 17, 281 (1995).

    Article  Google Scholar 

  20. Z. J. Ding and R. Shimizu, Scanning 18, 92 (1996).

    Article  Google Scholar 

  21. N. F. Mott, Proc. R. Soc. London A 124, 425 (1929).

    Article  ADS  Google Scholar 

  22. R. A. Bonham and T. G. Strand, J. Chem. Phys. 39, 2200 (1963).

    Article  ADS  Google Scholar 

  23. Z. J. Ding, X. D. Tang, and R. Shimizu, J. Appl. Phys. 89, 718 (2001).

    Article  ADS  Google Scholar 

  24. D. R. Penn, Phys. Rev. B 35, 482 (1987).

    Article  ADS  Google Scholar 

  25. K. O. Jensen and A. B. Walker, Surf. Sci. 292, 83 (1993).

    Article  ADS  Google Scholar 

  26. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, New York, 1997), Vol. 2.

  27. L. Reimer, Scanning Electron Microscopy, 2nd ed. (Springer, New York, 1998), p. 32.

    Book  Google Scholar 

  28. A. Seeger, C. Fretzagias, and R. Taylor, Scanning 25, 264 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zhang.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P. Exploring the Influence of a Focusing and Gaussian Profile Electron Beam in SEM Imaging through Monte Carlo Simulation. Moscow Univ. Phys. 73, 89–94 (2018). https://doi.org/10.3103/S0027134918010174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918010174

Navigation