Skip to main content
Log in

An Ab Initio Study of the Structural and Electronic Properties of the Low-Defect TiC(110) Surface Simulating Oxygen Adsorption after Exposure to Laser Plasma

  • Condensed Matter Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

An ab initio simulation of the adsorption of atomic oxygen on the low-defect titanium carbide (110) surface reconstructed by laser radiation was performed. The relaxed atomic structures of the (110) surface of the O/TixCy system with Ti and C vacancies observed during the thermal treatment were studied in terms of the density functional theory. DFT calculations of their structural, thermodynamic, and electronic properties were performed. The bond lengths and adsorption energies were determined for various reconstructions of the atomic structure of the O/TixCy(110) surface. The effects of the oxygen adatom on the band and electronic spectra of the O/TixCy(110) surface were studied. The effective charges on the titanium and carbon atoms surrounding the oxygen atom in various reconstructions were determined. The charge transfer from titanium to oxygen and carbon atoms was found, which is determined by the reconstruction of the local atomic and electronic structures and correlates with chemisorption processes. The potential mechanisms of laser nanostructuring of the titanium carbide surface were suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Allred, J. Inorg. Nucl. Chem. 17, 215 (1961). https://doi.org/10.1016/0022-1902(61)80142-5

    Article  Google Scholar 

  2. S. Cardinal, A. Malchere, V. Garnier, et al., Int. J. Refract. Met. Hard Mater. 27, 521 (2009).

    Article  Google Scholar 

  3. X. Y. Ding, L. Luo, L. M. Huang, et al., J. Alloys Compd. 619, 704 (2015). https://doi.org/10.1016/j.jallcom.2014.08.242

    Article  Google Scholar 

  4. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  5. V. V. Ilyasov, K. D. Pham, O. M. Holodova, et al., Appl. Surf. Sci. 351, 433 (2015). https://doi.org/10.1016/j.apsusc.2015.05.146

    Article  Google Scholar 

  6. V. V. Ilyasov, K. D. Pham, G. E. Yalovega, et al., Surf. Sci. 649, 20 (2016). https:/doi.org/10.1016/j.susc.2016.01.021

    Article  ADS  Google Scholar 

  7. B. Jiang, N. Hou, S. Huang, et al., J. Solid State Chem. 204, 1 (2013). https://doi.org/10.1016/j.jssc.2013.05.009

    Article  ADS  Google Scholar 

  8. M. Kaminsky, R. Nielsen, and P. Zschack, J. Vac. Sci. Technol. 21, 903 (1982). https://doi.org/10.1116/1.571850

    Article  ADS  Google Scholar 

  9. H. Kuramochi, K. Takami, A. Saito, et al., Appl. Phys. Lett. 75, 3784 (1999).

    Article  ADS  Google Scholar 

  10. A. Lekatou, A. E. Karantzalis, A. Evangelou, et al., Mater. Des. 65, 1121 (2015). https://doi.org/10.1016/j.matdes.2014.08.040

    Article  Google Scholar 

  11. P.-O. Löwdin, Adv. Quantum Chem. 5, 185 (1970).

    Article  ADS  Google Scholar 

  12. Y. Kumashiro, Electric Refractory Materials (CRC Press, 2000).

    Book  Google Scholar 

  13. Y. Pei, C. Chen, K. Shaha, et al., Acta Mater. 56, 696 (2008).

    Article  Google Scholar 

  14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  15. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, et al., Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  16. C. Ruberto and B. I. Lundqvist, Phys. Rev. B 75, 235438 (2007).

    Article  ADS  Google Scholar 

  17. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  18. L. Wang, L.-h. Fang, and J.-h. Gong, Trans. Nonferrous Met. Soc. China 22, 170 (2012). https://doi.org/10.1016/S1003-6326(11)61157-6

    Article  Google Scholar 

  19. Y. Yang, H. Lu, C. Yu, et al., J. Alloys Compd. 485, 542 (2009). https://doi.org/10.1016/j.jallcom.2009.06.023

    Article  Google Scholar 

  20. S. I. Mikolutskiy, V. Yu. Khomich, V. A. Shmakov, and V. A. Yamshchikov, Nanotechnol. Russ. 6, 733 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Pham.

Additional information

Original Russian Text © V.V. Ilyasov, D.K. Pham, A.V. Ilyasov, T.I. Grebenok, Chuong V. Nguyen, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 6, pp. 56–64.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyasov, V.V., Pham, D.K., Ilyasov, A.V. et al. An Ab Initio Study of the Structural and Electronic Properties of the Low-Defect TiC(110) Surface Simulating Oxygen Adsorption after Exposure to Laser Plasma. Moscow Univ. Phys. 72, 550–557 (2017). https://doi.org/10.3103/S002713491706008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713491706008X

Keywords

Navigation