Skip to main content
Log in

Photon beam softening coefficients evaluation for a 6 MeV photon beam for an aluminum slab: Monte Carlo study using BEAMnrc Code, DOSXYZnrc Code, and BEAMDP code

  • Physics of Nuclei and Elementary Particles
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Determination and understanding the photon beam attenuation by the photon beam modifier and the radiation beam softening for clinical use is more important part of material study for the beam modifier enhancements and the linac improvements. A Monte Carlo model was used to simulate 6 MeV photon beams from a Varian Clinac 2100 accelerator with the flattening filter and the later was replaced by the aluminum slab with variable thickness. The Monte Carlo geometry was validated by a gamma index acceptance rate of 99% in PDD and 98% in dose profiles, the gamma criteria was 3% for dose difference and 3 mm for distance to agreement. The purpose was to investigate aluminum material attenuation and beam softening coefficients as a function of the inserted aluminum slab thickness and of off-axis distance. The attenuation and beam softening coefficients were not identical for the same off-axis distance and they varied as a function of aluminum slab thickness. The results of our study were shown that the beam softening coefficients were varied with thickness beam modifier material used for beam softening and the off-axis distance inside the irradiation field. Thereafter, the softening coefficient a 1 have a maximum of 2.5 × 10–1 cm–1 for the aluminum slab thickness of 1 mm, 1.4 × 10–1 cm–1 for the aluminum slab thickness of 1.5 mm and 4.47 × 10–2 cm–1 for the aluminum slab thickness of 2 mm. The maximum of the second softening coefficient a 2 was 1.02 × 10–2 cm–2 for the aluminum slab thickness of 1 mm, was 1.92 × 10–2 cm–2 for the aluminum slab thickness of 1.5 mm and was 1.93 × 10–2 cm–2 for the aluminum slab thickness of 2 mm. Our study can be a basic investigation of photon beam softening material that will be used in the future linac configuration and also in the photon beam modifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. El Bakkali and T. El Bardouni, J. King Saud Univ., Sci. 29, 106 (2017).

    Article  Google Scholar 

  2. Y. Tayalati, S. Didi, M. Zerfaoui, and A. Moussaa, arXiv:1309.0758 [physics.med-ph].

  3. S. Didi, A. Moussa, Y. Tayalati, and M. Zerfaoui, J. Med. Phys. 40, 136 (2015).

    Article  Google Scholar 

  4. D. W. O. Rogers, B. Walters, and I. Kawrakow, BEAMnrc Users Manual (National Research Council of Canada, Ottawa, 2015).

    Google Scholar 

  5. B. Walters, I. Kawrakow, and D. W. O. Rogers, DOSXYZnrc Users Manual (National Research Council of Canada, Ottawa, 2015).

    Google Scholar 

  6. D. W. O. Rogers, I. Kawrakow, J. P. Seuntjens, B. R. B. Walters, and E. Mainegra-Hing, NRC User Codes for EGSnrc (National Research Council of Canada, Ottawa, 2011).

    Google Scholar 

  7. C.-M. Ma and D. W. O. Rogers, BEAMDP Users Manual (National Research Council of Canada, Ottawa, 2013).

    Google Scholar 

  8. D. A. Low and J. F. Dempsey, Med. Phys. 30, 2455 (2013).

    Article  Google Scholar 

  9. J. E. Cygler, C. Lochrin, G. M. Daskalov, M. Howard, R. Zohr, and B. Esche, Phys. Med. Biol. 50, 1029 (2005).

    Article  Google Scholar 

  10. THERAPLAN Plus Technical Reference Manual, 18th ed. (MDS Nordion, 2000).

  11. J. R. Palta, S. Kim, J. G. Li, and C. Liu, in Intensity-Modulated Radiation Therapy: The State of the Art, Ed. by J. R. Palta and T. R. Mackie (Med. Phys. Publ., 2003), p. 593.

  12. M. Yu, R. Sloboda, and B. Murray, Med. Phys. 24, 233 (1997).

    Article  Google Scholar 

  13. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer (International Atomic Energy Agency, Vienna, 2004).

  14. Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems (International Atomic Energy Agency, Vienna, 2007).

  15. F. Verhaegen and J. Seuntjens, Phys. Med. Biol. 48, 3401 (2003).

    Article  Google Scholar 

  16. O. Chibani, B. Moftah, and C.-M. Ma, Med. Phys. 38, 188 (2011).

    Article  Google Scholar 

  17. J. V. Siebers, P. J. Keall, B. Libby, and R. Mohan, Phys. Med. Biol. 44, 3009 (1999).

    Article  Google Scholar 

  18. L. Apipunyasopon, S. Srisatit, and N. Phaisangittisakul, J Radiat. Res. 54, 374 (2013).

  19. D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656 (1998).

    Article  Google Scholar 

  20. K. F. Michael, J. K. Paul, and V. S. Jeffrey, Med. Phys. 32, 1164 (2005).

    Article  Google Scholar 

  21. K. Aljarrah, G. C. Sharp, T. Neicu, and S. B. Jiang, Med. Phys. 33, 850 (2006).

    Article  Google Scholar 

  22. A. Mesbahi, Iran. J Radiat. Res. 4, 7 (2006).

    Google Scholar 

  23. O. N. Vassiliev, U. Titt, S. F. Kry, F. Pönisch, M. Gillin, and R. Mohan, Med. Phys. 33, 820 (2006).

    Article  Google Scholar 

  24. O. N. Vassiliev, U. Titt, S. F. Kry, F. Pönisch, M. Gillin, and R. Mohan, Phys. Med. Biol. 51, 1907 (2006).

    Article  Google Scholar 

  25. D. Pearson, E. Parsai, and J. Fledmeier, Med. Phys. 33, 2099 (2006).

    Article  Google Scholar 

  26. D. Sheikh-Bagheri and D. W. Rogers, Med. Phys. 29, 379 (2002).

    Article  Google Scholar 

  27. M. Oprea, C. Constantin, D. Mihailescu, and C. Borcia, UPB Sci. Bull., Ser. A 74 (4), 153 (2012).

  28. F. Verhaegen and J. Seuntjens, Phys. Med. Biol. 48, 3401 (2003).

    Article  Google Scholar 

  29. O. Chibani, B. Moftah, and C.-M. Ma, Med. Phys. 38, 188 (2011).

    Article  Google Scholar 

  30. J. V. Siebers, P. J. Keall, B. Libby, and R. Mohan, Phys. Med. Biol. 44, 3009 (1999).

    Article  Google Scholar 

  31. J. Sun, G. Doswell, and J. Cunningham, in Proc. 22nd Annual EMBS Int. Conf., Chicago, United States, 2000 (IEEE, 2000), Vol. 3, p. 1813.

    Google Scholar 

  32. B. Kadman, N. Chawapun, S. Ua-apisitwong, T. Asakit, N. Chumpu, and J. Rueansri, J. Phys.: Conf. Ser. 694, 012023 (2016).

    Google Scholar 

  33. M. Aljamal and A. Zakaria, Aust. J. Basic Appl. Sci. 7, 340 (2013).

    Google Scholar 

  34. M. Maqbool, W. Muhammad, M. Shahid, M. Ahmad, and M. Matiullah, Rep. Pract. Oncol. Radiother. 14, 214 (2009).

    Article  Google Scholar 

  35. P. Lonski, M. L. Taylor, R. D. Franich, P. Harty, and T. Kron, Radiat. Prot. Dosim. 152, 304 (2012).

    Article  Google Scholar 

  36. Y. Huang, R. A. Siochi, and J. E. Bayouth, J. Appl. Clin. Med. Phys. 13 (4), 71 (2012).

    Article  Google Scholar 

  37. O. A. García-Garduño, M. Á. Celis, J. M. Lárraga-Gutiérrez, S. Moreno-Jiménez, A. Martínez-Dávalos, and M. Rodríguez-Villafuerte, J. Appl. Clin. Med. Phys. 9 (3), 90 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bencheikh.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencheikh, M., Maghnouj, A. & Tajmouati, J. Photon beam softening coefficients evaluation for a 6 MeV photon beam for an aluminum slab: Monte Carlo study using BEAMnrc Code, DOSXYZnrc Code, and BEAMDP code. Moscow Univ. Phys. 72, 263–270 (2017). https://doi.org/10.3103/S0027134917030043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917030043

Keywords

Navigation