Skip to main content
Log in

The run-up of nonlinearly deformed sea waves on the coast of a bay with a parabolic cross-section

  • Physics of Earth, Atmosphere, and Hydrosphere
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The run-up of long waves on the coast of a bay with a parabolic cross-section, where the region of constant depth along the principal axis of the bay is connected with the linearly inclined segment, is considered. The study is carried out analytically in the framework of the nonlinear shallow-water theory under the approximation that the height of the initial wave is small compared to the basin depth, and the reflection from the inflection point of the bottom is negligibly small. Three types of incident waves, viz., a sinusoidal wave and solitary waves of positive and negative polarities, are considered in detail. It is shown that a sinusoidal wave undergoes nonlinear deformation at a segment of constant depth faster than solitary waves of positive and negative polarities. Solitary waves of negative polarity steepen somewhat faster than solitary waves of positive polarity. Waves of positive polarity steepen at wave front, while waves of negative polarity steepen at wave rear. These differences in steepness may become crucial at the wave run-up stage, since the wave run-up height on the coast of a bay with a parabolic cross-section is directly proportional to the steepness of a wave that arrives at the slope and can lead to the anomalous run-up of waves on the coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Carrier and H. P. Greenspan, J. Fluid Mech. 4, 97 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. F. Dotsenko, Physical Oceanography 15 (4), 211 (2005).

    Article  MathSciNet  Google Scholar 

  3. A. V. Bernatskiy and M. A. Nosov, Izv., Atmos. Ocean. Phys. 48, 427 (2012).

    Article  Google Scholar 

  4. U. Kanoglu, J. Fluid Mech. 513, 363 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  5. C. E. Synolakis, J. Fluid Mech. 185, 523 (1987).

    Article  ADS  Google Scholar 

  6. S. Tadepalli and C. Synolakis, Proc. R. Soc. London 445, 99 (1994).

    Article  ADS  Google Scholar 

  7. S. Tinti and R. Tonini, J. Fluid Mech. 535, 33 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  8. I. I. Didenkulova, N. Zahibo, A. A. Kurkin, B. V. Levin, E. N. Pelinovsky, and T. Soomere, Dokl. Earth Sci. 411, 1241 (2006). doi 10.1134/S1028334X06080186

    Article  ADS  Google Scholar 

  9. I. Didenkulova, in Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods, Ed. by E. Quak and T. Soomere (Springer, 2009), p. 265.

    Book  MATH  Google Scholar 

  10. F. Lavigne, R. Paris, D. Grancher, et al., Pure Appl. Geophys. 166, 259 (2009). doi 10.1007/s00024-008-0431-8

    Article  ADS  Google Scholar 

  11. E. A. Okal, H. M. Fritz, C. E. Synolakis, et al., Seismol. Res. Lett. 81, 577 (2010). doi 10.1785/gssrl.81.4.577

    Article  Google Scholar 

  12. I. Didenkulova, Nat. Hazards 65, 1629 (2013). doi 10.1007/s11069-012-0435-7

    Article  Google Scholar 

  13. Y. Tsuji, K. Satake, T. Ishibe, et al., Pure Appl. Geophys. 171, 3183 (2014). doi 10.1007/s00024-014-0779-x

    Article  ADS  Google Scholar 

  14. I. Didenkulova and E. Pelinovsky, Phys. Lett. A 373, 3883 (2009). doi 10.1016/j.physleta.2009.08.051

    Article  ADS  Google Scholar 

  15. I. Didenkulova and E. Pelinovsky, Pure Appl. Geophys. 168, 1239 (2011). doi 10.1007/s00024-010-0232-8

    Article  ADS  Google Scholar 

  16. D. A. Jay, J. Geophys. Res.: Oceans 96, 20585 (1991). doi 10.1029/91JC01633

    Article  ADS  Google Scholar 

  17. C. T. Friedrichs and D. G. Aubrey, J. Geophys. Res.: Oceans 99, 3321 (1994). doi 10.1029/93JC03219

    Article  ADS  Google Scholar 

  18. D. Prandle, J. Phys. Oceanogr. 33, 2738 (2003).

    Article  ADS  Google Scholar 

  19. H. H. Savenije, M. Toffolon, J. Haas, and E. J. Veling, J. Geophys. Res.: Oceans 113, C10025 (2008). doi 10.1029/2007JC004408

    Article  ADS  Google Scholar 

  20. B. V. Levin and M. A. Nosov, Physics of Tsunamis (Springer, 2016).

    Book  Google Scholar 

  21. I. Didenkulova and E. Pelinovsky, Phys. Fluids 23, 086602 (2011). doi 10.1063/1.3623467

    Article  ADS  Google Scholar 

  22. A. Rybkin, E. Pelinovsky, and I. Didenkulova, J. Fluid Mech. 748, 416 (2014). doi 10.1017/jfm.2014.197

    Article  ADS  MathSciNet  Google Scholar 

  23. I. Didenkulova and E. Pelinovsky, Nonlinearity 24, R1 (2011). doi 10.1088/0951-7715/24/3/R01

    Article  ADS  MathSciNet  Google Scholar 

  24. I. I. Didenkulova, N. Zahibo, A. A. Kurkin, and E. N. Pelinovsky, Izv., Atmos. Ocean. Phys. 42 (6), 773 (2006). doi 10.1134/S0001433806060119

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Didenkulov.

Additional information

Original Russian Text © O.I. Didenkulov, I.I. Didenkulova, E.N. Pelinovsky, 2016, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2016, No. 3, pp. 86–91.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didenkulov, O.I., Didenkulova, I.I. & Pelinovsky, E.N. The run-up of nonlinearly deformed sea waves on the coast of a bay with a parabolic cross-section. Moscow Univ. Phys. 71, 323–328 (2016). https://doi.org/10.3103/S0027134916030048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134916030048

Keywords

Navigation