Skip to main content
Log in

The calculation of singular points in the supercritical region for a system with a Lennard—Jones interaction potential

  • Theoretical and Mathematical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In this work the positions of the critical point, the supercritical point, and the maximum fluctuation point in a supercritical isotherm were found for a system with the Lennard—Jones interaction potential. Virial coefficients and methods based on accelerated convergence of the perturbation-theory series, which are well known for such systems, were used. The results were compared with computer-simulation data. As has been established, if one uses the positively defined Weeks—Chandler—Andersen potential as a reference system, the calculated parameters tend monotonically to exact values as a function of the number of virial coefficients. This decomposition is favorably different from the virial one, where the aspiration is not monotonic. These results indicate that this method makes it possible to determine the positions of the three vertices of the supercritical triangle with an accuracy that is comparable to that of a simulated experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ohtori and Y. Ishii, Phys. Rev. E 91, 012111 (2015).

    Article  ADS  Google Scholar 

  2. B. Vorselaars, J. Chem. Phys. 142, 114115 (2015).

    Article  ADS  Google Scholar 

  3. E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, et al., Phys. Rev. Lett. 114, 108001 (2015).

    Article  ADS  Google Scholar 

  4. P. N. Nikolaev, Moscow Univ. Phys. Bull. 69, 134 (2014). doi 10.3103/S0027134914020106

    Article  ADS  Google Scholar 

  5. R. Benjamin and J. Horbach, J. Chem. Phys. 139, 084705 (2013).

    Article  ADS  Google Scholar 

  6. K. D. Parrish, A. Join, J. M. Larkin, et al., Phys. Rev. B 90, 235201 (2014).

    Article  ADS  Google Scholar 

  7. D. E. Allbrechtsen, A. E. Olsen, U. R. Pedersen, et al., Phys. Rev. B 90, 094106 (2014).

    Article  ADS  Google Scholar 

  8. L. Wang and N. Xu, Phys. Rev. Lett. 112, 055701 (2014).

    Article  ADS  Google Scholar 

  9. P. N. Nikolaev, Moscow Univ. Phys. Bull. 69, 146 (2014). doi 10.3103/S0027134914020118

    Article  ADS  Google Scholar 

  10. H. Zhang, S. Peng, L. Mao, et al., Phys. Rev. E 90, 062410 (2014).

    Article  ADS  Google Scholar 

  11. N. Sharifi-Mood, J. Koplik, and C. Maldarelli, Phys. Rev. Lett. 111, 184501 (2013).

    Article  ADS  Google Scholar 

  12. P. N. Nikolaev, Moscow Univ. Phys. Bull. 68, 196 (2013). doi 10.3103/S0027134913030089

    Article  ADS  Google Scholar 

  13. J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  14. I. P. Bazarov, Thermodynamics (Moscow, 2010) [in Russian].

    Google Scholar 

  15. G. Galliero, S. Lafitte, D. Bessieres, and C. Bonen, J. Chem. Phys. 127, 184506 (2007).

    Article  ADS  Google Scholar 

  16. H. Okumara and F. C. Yonezawa, J. Chem. Phys. 113, 9162 (2000).

    Article  ADS  Google Scholar 

  17. P. N. Nikolaev, Moscow Univ. Phys. Bull. 67, 413 (2012). doi 10.3103/S0027134912050062

    Article  ADS  Google Scholar 

  18. M. J. McGrath, J. N. Ghogomu, N. T. Tsona, et al., J. Chem. Phys. 133, 084106 (2010).

    Article  ADS  Google Scholar 

  19. J. J. Potoff and A. Z. Panagiotopoulos, J. Chem. Phys. 109, 10914 (1998).

    Article  ADS  Google Scholar 

  20. J. P. Peres-Pellitero, P. Ungerer, G. Orkaulas, and A. D. Mackie, J. Chem. Phys. 125, 054515 (2006).

    Article  ADS  Google Scholar 

  21. P. N. Nikolaev, Moscow Univ. Phys. Bull. 65, 159 (2010). doi 10.3103/S002713491003001X

    Article  ADS  Google Scholar 

  22. A. J. Schultz and D. Kofke, J. Chem. Phys. 130, 224104 (2009).

    Article  ADS  Google Scholar 

  23. A. J. Schultz and D. A. Kofke, Mol. Phys. 107, 2309 (2009).

    Article  ADS  Google Scholar 

  24. A. J. Schultz, N. S. Barlow, V. Chaudhary, and D. A. Kofke, Mol. Phys. 111, 535 (2013).

    Article  ADS  Google Scholar 

  25. C. A. Croxton, Liquid State Physics: A Statistical Mechanical Introduction (Cambridge, 2009).

    Google Scholar 

  26. P. N. Nikolaev, Moscow Univ. Phys. Bull. 63, 238 (2008). doi 10.3103/S0027134908040036

    Article  ADS  Google Scholar 

  27. N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, Accelerated Convergence Method in Nonlinear Mechanics (Kiev, 1969) [in Russian].

    Google Scholar 

  28. P. N. Nikolaev, Moscow Univ. Phys. Bull. 66, 207 (2011). doi 10.3103/S0027134911030155

    Article  ADS  Google Scholar 

  29. I. P. Bazarov and P. N. Nikolaev, Mew Methods in Many-Particle Systems Theory (Moscow, 1995) [in Russian].

    Google Scholar 

  30. P. N. Nikolaev, Moscow Univ. Phys. Bull. 66, 541 (2011). doi 10.3103/S0027134911060142

    Article  ADS  Google Scholar 

  31. V. K. Semenchenko, Selected Chapters from Theoretical Physics (Moscow, 1966) [in Russian].

    Google Scholar 

  32. S. Ma, Modern Theory of Critical Phenomena (London, 1976).

    Google Scholar 

  33. C. Lecoutre, R. Gillaument, R. Marre, et al., Phys. Rev. E 91, 060101 (2015).

    Article  ADS  Google Scholar 

  34. M. Hidalgo, K. Coutinho, and S. Canuto, Phys. Rev. E 91, 032115 (2015).

    Article  ADS  Google Scholar 

  35. S. Whitelam, L. O. Hedges, and J. D. Schmit, Phys. Rev. Lett. 112, 155504 (2014).

    Article  ADS  Google Scholar 

  36. J. Luo, L. Xu, E. Laxaris, et al., Phys. Rev. Lett. 112, 135701 (2014).

    Article  ADS  Google Scholar 

  37. I. P. Bazarov and P. N. Nikolaev, Theor. Math. Phys. 31, 361 (1977). doi 10.1007/BF01041244

    Article  Google Scholar 

  38. I. P. Bazarov and P. N. Nikolaev, Theor. Math. Phys. 94, 109 (1993). doi 10.1007/BF01017001

    Article  MathSciNet  Google Scholar 

  39. O. P. Nikolaeva, Russ. Phys. J. 51, 1174 (2008). doi 10.1007/s11182-009-9149-z

    Article  Google Scholar 

  40. S. Wu, S. Ruan, and Z. Cheng, Phys. Rev. Lett. 112, 219503 (2014).

    Article  ADS  Google Scholar 

  41. L. Rovigatti, J. M. Tavares, and F. Sciortino, Phys. Rev. Lett. 111, 168302 (2013).

    Article  ADS  Google Scholar 

  42. L. Berthier and R. L. Jack, Phys. Rev. Lett. 114, 205701 (2015).

    Article  ADS  Google Scholar 

  43. P. N. Nikolaev, Phys.-Usp. 54, 1155 (2011). doi 10.3367/UFNe.0181.201111f.1195

    Article  ADS  Google Scholar 

  44. M. R. Moldover, J. V. Sengers, R. W. Gammon, and R. J. Hocken, Rev. Mod. Phys. 51, 78 (1979).

    Article  ADS  Google Scholar 

  45. M. L. Akimov, D. V. Vagin, O. P. Polyakov, et al., Bull. Russ. Acad. Sci.: Phys. 71, 1556 (2007). doi 10.3103/S106287380711024X

    Article  Google Scholar 

  46. M. Dzero, M. R. Norman, I. Paul, et al., Phys. Rev. Lett. 97, 185701 (2006).

    Article  ADS  Google Scholar 

  47. S. Yalunaka, R. Okamoto, and A. Onuki, Phys. Rev. E 87, 032405 (2013).

    Article  ADS  Google Scholar 

  48. T. N. Gerasimenko, P. A. Polyakov, and I. E. Frolov, Prog. Electromagn. Res. 47, 41 (2014). doi 10.2528/PIERL14062702

    Article  Google Scholar 

  49. D. X. Yao, E. W. Carlson, and D. K. Campbell, Phys. Rev. Lett. 97, 017003 (2006).

    Article  ADS  Google Scholar 

  50. C. A. Grabowski and A. Mukhopadhyay, Phys. Rev. Lett. 98, 207801 (2007).

    Article  ADS  Google Scholar 

  51. K. Takekoshi, K. Ema, H. Yao, et al., Phys. Rev. Lett. 97, 197801 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Nikolaev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, P.N. The calculation of singular points in the supercritical region for a system with a Lennard—Jones interaction potential. Moscow Univ. Phys. 71, 75–80 (2016). https://doi.org/10.3103/S0027134916010148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134916010148

Keywords

Navigation