Skip to main content
Log in

Effect of Operating Conditions on the Yield of 2-Hydroxyterephthalic Acid for Tracing OH Radical in Electrochemical Process

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

The boron-doped diamond electrode has been widely applied in electrochemical process for wastewater treatment based on the generation of hydroxyl radicals (OH). This study investigated the formation efficiency of 2-HTA through the interaction between OH radical and terephthalic acid (TA) to monitor the OH formation. Results show that the 2-HTA formation efficiency did not depend on the initial concentration of scavenger (here, TA) in the investigated range of 0.1 to 1 mM TA. Meanwhile, other factors, such as current density, supporting electrolyte, sodium hydroxide have a significant influence. The optimal condition was established: concentration of electrolyte (0.05 M Na2SO4); initial concentration of TA (0.1 mM); concentration of NaOH (1 mM); current density (j = 20 mA cm–2). The selectivity of TA was evaluated by Faradaic efficiency (η) and hydroxylation yield (\({{{{\gamma }}}_{{{\text{TAOH}}}}}\)), indicating that Faradaic efficiency (η) for 2-HTA formation was in the range of 10–5–10–7, while the hydroxylation yield of OH (\({{{{\gamma }}}_{{{\text{TAOH}}}}}\)) into 2-HTA was 0.03–0.12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Sedlak, D.L. and Andren, A.W., Environ. Sci. Technol., 1991, vol. 25, no. 4, p. 777.

    Article  CAS  Google Scholar 

  2. Hoang, N.T., Nguyen, X.C., Le, P.-C., Juzsakova, T., Chang, S.W., and Nguyen, D.D., J. Environ. Chem. Eng., 2021, vol. 9, no. 3, 105205. https://doi.org/10.1016/j.jece.2021.105205

    Article  CAS  Google Scholar 

  3. Hoang, N.T. and Holze, R., Russ. J. Electrochem., 2020, vol. 56, no. 6, p. 492–505. https://doi.org/10.1134/S1023193520060087

    Article  Google Scholar 

  4. Iniesta, J., Electrochim. Acta, 2001, vol. 46, no. 23, p. 3573. https://doi.org/10.1016/S0013-4686(01)00630-2

    Article  CAS  Google Scholar 

  5. Sopchak, D., Miller, B., Avyigal, Y., and Kalish, R., J. Electroanal. Chem., 2002, vols. 538–539, p. 39. https://doi.org/10.1016/S0022-0728(02)01045-8

    Article  Google Scholar 

  6. Hoang, N.T. and Holze, R., J. Solid State Electrochem., 2021, vol. 25, no. 1, p. 73. https://doi.org/10.1007/s10008-020-04581-7

    Article  CAS  Google Scholar 

  7. Cañizares, P., Sáez, C., Lobato, J., and Rodrigo, M.A., Electrochim. Acta, 2004, vol. 49, no. 26, p. 4641. https://doi.org/10.1016/j.electacta.2004.05.019

    Article  CAS  Google Scholar 

  8. Marselli, D., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M.A., and Comninellis, C., J. Electrochem. Soc., 2003, vol. 150, no. 3, p. D79. https://doi.org/10.1149/1.1553790

    Article  CAS  Google Scholar 

  9. Gonzalez, D.H., Kuang, X.M., Scott, J.A., Rocha, G.O., and Paulson, S.E., Anal. Lett., 2018, vol. 51, no. 15, p. 2488, Oct. 2018. https://doi.org/10.1080/00032719.2018.1431246

  10. Faust, B.C. and Allen, J.M., Environ. Sci. Technol., 1993, vol. 27, no. 6, p. 1221. https://doi.org/10.1021/es00043a024

    Article  CAS  Google Scholar 

  11. Sato, M., Ohgiyama, T., and Clements, J.S., Proc. 1994 IEEE Industry Applications Society Annual Meeting, 1994, p. 1455. https://doi.org/10.1109/IAS.1994.377617

  12. Ono, R. and Oda, T., J. Electrostat., 2002, vol. 55, nos. 3–4, p. 333. https://doi.org/10.1016/S0304-3886(01)00215-7

    Article  CAS  Google Scholar 

  13. Černigoj, U., Štangar, U.L., Trebše, P., and Sarakha, M., J. Photochem. Photobiol., A, 2009, vol. 201, nos. 2–3, p. 142. https://doi.org/10.1016/j.jphotochem.2008.10.014

    Article  CAS  Google Scholar 

  14. Luo, L., Cooper, A.T., and Fan, M., J. Hazard. Mater., 2009, vol. 161, no. 1, p. 175. https://doi.org/10.1016/j.jhazmat.2008.03.105

    Article  CAS  PubMed  Google Scholar 

  15. Fang, X., Mark, G., and von Sonntag, C., Ultrason. Sonochem., 1996, vol. 3, no. 1, p. 57. https://doi.org/10.1016/1350-4177(95)00032-1

    Article  CAS  Google Scholar 

  16. Bubacz, K., Kusiak-Nejman, E., Tryba, B., and Morawski, A.W., J. Photochem. Photobiol., A, 2013, vol. 261, p. 7s. https://doi.org/10.1016/j.jphotochem.2013.04.003

    Article  CAS  Google Scholar 

  17. Janus, M., Choina, J., and Morawski, A.W., J. Hazard. Mater., 2009, vol. 166, no. 1, p. 1. https://doi.org/10.1016/j.jhazmat.2008.11.024

    Article  CAS  PubMed  Google Scholar 

  18. Xiao, Q. and Ouyang, L., Chem. Eng. J., 2009, vol. 148, nos. 2–3, p. 248. https://doi.org/10.1016/j.cej.2008.08.024

    Article  CAS  Google Scholar 

  19. Matthews, R.W., Radiat. Res., 1980, vol. 83, no. 1, p. 27. https://doi.org/10.2307/3575256

    Article  CAS  PubMed  Google Scholar 

  20. Charbouillot, T., Brigante, M., Mailhot, G., Maddigapu, P.R., Minero, C., and Vione, D., J. Photochem. Photobiol., A, 2011, vol. 222, no. 1, p. 70. https://doi.org/10.1016/j.jphotochem.2011.05.003

    Article  CAS  Google Scholar 

  21. Rodríguez, E.M. and von Gunten, U., Water Res., 2020, vol. 177, 115691. https://doi.org/10.1016/j.watres.2020.115691

    Article  CAS  PubMed  Google Scholar 

  22. Henke, A.H., Saunders, T.P., Pedersen, J.A., and Hamers, R.J., Langmuir, 2019, vol. 35, no. 6, p. 2153. https://doi.org/10.1021/acs.langmuir.8b04030

    Article  CAS  PubMed  Google Scholar 

  23. Kisacik, I., Stefanova, A., Ernst, S., and Baltruschat, H., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 13, p. 4616. https://doi.org/10.1039/c3cp44643c

    Article  CAS  PubMed  Google Scholar 

  24. Murugananthan, M., Latha, S.S., Bhaskar Raju, G., and Yoshihara, S., Sep. Purif. Technol., 2011, vol. 79, no. 1, p. 56. https://doi.org/10.1016/j.seppur.2011.03.011

    Article  CAS  Google Scholar 

  25. Liu, L., Yang, C., Tan, W., and Wang, Y., ACS Omega, 2020, vol. 5, no. 23, p. 13739. https://doi.org/10.1021/acsomega.0c00903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kapałka, A., Fóti, G., and Comninellis, C., Electrochem. Commun., 2008, vol. 10, no. 4, p. 607. https://doi.org/10.1016/j.elecom.2008.02.003

    Article  CAS  Google Scholar 

  27. García-Osorio, D.A., Jaimes, R., Vazquez-Arenas, J., Lara, R.H., and Alvarez-Ramirez, J., J. Electrochem. Soc., 2017, vol. 164, no. 11, p. E3321. https://doi.org/10.1149/2.0321711jes

    Article  CAS  Google Scholar 

  28. Zhang, C., Yang, L., Rong, F., Fu, D., and Gu, Z., Electrochim. Acta, 2012, vol. 64, p. 100. https://doi.org/10.1016/j.electacta.2011.12.122

    Article  CAS  Google Scholar 

  29. Lee, Y., Gerrity, D., Lee, M., et al., Environ. Sci. Technol., 2013, vol. 47, no. 11, p. 5872. https://doi.org/10.1021/es400781r

    Article  CAS  PubMed  Google Scholar 

  30. Buxton, G.V. Greenstock, C.L. Helman, W.P. and Ross, A.B., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. 2, p. 513. https://doi.org/10.1063/1.555805

    Article  CAS  Google Scholar 

  31. Mandal, S., J. Adv. Oxid. Technol., 2018, vol. 21, no. 1, p. 178. https://doi.org/10.26802/jaots.2017.0075

    Article  Google Scholar 

  32. Murugananthan, M., Yoshihara, S., Rakuma, T., Uehara, N., and Shirakashi, T., Electrochim. Acta, 2007, vol. 52, no. 9, p. 3242. https://doi.org/10.1016/j.electacta.2006.09.073

    Article  CAS  Google Scholar 

  33. Martin de Vidales, M.J., Millán, M., Sáez, C., Cañizares, P., and Rodrigo, M.A., Electrochem. Commun., 2016, vol. 67, p. 65. https://doi.org/10.1016/j.elecom.2016.03.014

    Article  CAS  Google Scholar 

  34. Zhang, C., Liu, L., Wang, J., Rong, F., and Fu, D., Sep. Purif. Technol., 2013, vol. 107, p. 91. https://doi.org/10.1016/j.seppur.2013.01.033

    Article  CAS  Google Scholar 

  35. Rajkumar, D., Palanivelu, K., and Balasubramanian, N., J. Environ. Eng. Sci., 2005, vol. 4, no. 1, p. 1. https://doi.org/10.1139/s04-037

    Article  CAS  Google Scholar 

  36. Samarghandi, M.R., Dargahi, A., Shabanloo, A., Nasab, H.Z., Vaziri, Y., and Ansari, A., Arab. J. Chem., 2020, vol. 13, no. 8, p. 6847. https://doi.org/10.1016/j.arabjc.2020.06.038

    Article  CAS  Google Scholar 

  37. Tryba, B., Toyoda, M., Morawski, A., Ronaka, R., and Inagaki, M., Appl. Catal., B, 2007, vol. 71, nos. 3–4, p. 163. https://doi.org/10.1016/j.apcatb.2005.12.036

    Article  CAS  Google Scholar 

  38. Jiang, Y.L., Liu, H.L., Wang, Q.H., and Jiang, Z.H., J. Environ. Sci. (China), 2006, vol. 18, no. 1, p. 158.

    Article  CAS  Google Scholar 

  39. Ishibashi, K., Fujishima, A., Watanabe, T., and Hashimoto, K., Electrochem. Commun., 2000, vol. 2, no. 3, p. 207. https://doi.org/10.1016/S1388-2481(00)00006-0

    Article  CAS  Google Scholar 

  40. Okamoto, K., Yamamoto, Y., Tanaka, H., Tanaka, M., and Itaya, A., Bull. Chem. Soc. Jpn., 1985, vol. 58, no. 7, p. 2015. https://doi.org/10.1246/bcsj.58.2015

    Article  CAS  Google Scholar 

  41. Peral, J., Casado, j., and Doménech, J., J. Photochem. Photobiol., A, 1988, vol. 44, no. 2, p. 209. https://doi.org/10.1016/1010-6030(88)80093-5

    Article  CAS  Google Scholar 

  42. Nakabayashi, Y. and Nosaka, Y., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 45, p. 30570. https://doi.org/10.1039/C5CP04531B

    Article  CAS  PubMed  Google Scholar 

  43. Černigoj, U., Kete, M., and Štangar, U.L., Catal. Today, 2010, vol. 151, nos. 1–2, p. 46. https://doi.org/10.1016/j.cattod.2010.03.043

    Article  CAS  Google Scholar 

  44. Newton, G.L. and Milligan, J.R., Radiat. Phys. Chem., 2006, vol. 75, no. 4, p. 473. https://doi.org/10.1016/j.radphyschem.2005.10.011

    Article  CAS  Google Scholar 

  45. Peralta, E., Roa, G., Hernandez-Servin, J.A., Romero, R., Balderas, P., and Natividad, R., Electrochim. Acta, 2014, vol. 129, p. 137. https://doi.org/10.1016/j.electacta.2014.02.047

    Article  CAS  Google Scholar 

  46. Hoang, N.T., Padan 95 SP treatment by electrochemical process and its combination with other techniques, Doctoral Sci. Dissertation, Chemnitz: Tech. Univ., 2019.

Download references

ACKNOWLEDGMENTS

Partial data in this paper were extracted from the doctoral thesis entitled “Padan 95 SP treatment by electrochemical process and its combination with other techniques” completed by the author (Mr. Nguyen Tien Hoang) for the Degree of Doctor of Philosophy at the Technische Universität Chemnitz, Germany [46].

We wish to express our thanks to Professor Rudolf Holze (Chemnitz University of Technology) for his supervision, Professor M. Sommer and Dr. E. Dietzsch (Chemnitz University of Technology) for experimental support and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Nguyen Tien Hoang: Writing—original draft, Conceptualization, Methodology, Writing—review & editing, Supervision. Fredrick M. Mwazighe: Writing—review & editing.

Corresponding author

Correspondence to Nguyen Tien Hoang.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen Tien Hoang, Fredrick M. Mwazighe Effect of Operating Conditions on the Yield of 2-Hydroxyterephthalic Acid for Tracing OH Radical in Electrochemical Process. Moscow Univ. Chem. Bull. 77, 286–299 (2022). https://doi.org/10.3103/S002713142205008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713142205008X

Keywords:

Navigation