Skip to main content
Log in

Photoprotolytic Reactions in Systems Immobilized on Silica Gel Using a Cationic Polyelectrolyte

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

The patterns of protolytic reactions in the immobilized state are studied using the example of classical systems with photoinduced proton transfer (2-naphthol and its sulfonated derivatives). It is found that the fixation of indicators with a cationic polyelectrolyte leads to a shift of pKa to the acidic region, and the magnitude of the shift depends on the number of sulfo groups in the molecule and reaches 1.2 units for disodium 2-naphthol-3,6,8-trisulfonate. At the same time, the photoprotolytic reaction in the lower singlet-excited state proceeds in the same way as for an unimmobilized substance, and no significant shift of \({\text{p}}K_{a}^{*}\) is observed. The possibility of creating a flow-through acidity sensor using a change in the ratio of the band intensities of the indicator protonated and deprotonated forms as an analytical signal is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Wencel, D., Abel, T., and McDonagh, C., Anal. Chem., 2014, vol. 86, no. 1, p. 15. https://doi.org/10.1021/ac4035168

    Article  CAS  PubMed  Google Scholar 

  2. Staudinger, C., Strobl, M., Breininger, J., Klimant, I., and Borisov, S.M., Sens. Actuators, B, 2019, vol. 282, p. 204. https://doi.org/10.1016/j.snb.2018.11.048

    Article  CAS  Google Scholar 

  3. Cai, Q.Y. and Grimes, C.A., Sens. Actuators, B, 2001, vol. 79, nos. 2–3, p. 144. https://doi.org/10.1016/S0925-4005(01)00860-7

    Article  CAS  Google Scholar 

  4. Dixit, R., Shen, L., Ratterman, M., Papautsky, I., and Klotzkin, D., Proc. SPIE, 2012, vol. 8251, p. 82510. https://doi.org/10.1117/12.910015

    Article  CAS  Google Scholar 

  5. Oter, O., Ertekin, K., and Derinkuyu, S., Talanta, 2008, vol. 76, p. 557. https://doi.org/10.1016/j.talanta.2008.03.047

    Article  CAS  PubMed  Google Scholar 

  6. Fritzsche, E., Gruber, P., Schutting, S., Fischer, J.P., Strobl, M., Müller, J.D., Borisov, S.M., and Klimant, I., Anal. Methods, 2017, vol. 9, p. 55. https://doi.org/10.1039/c6ay02949c

    Article  CAS  Google Scholar 

  7. Pfeifer, D., Russegger, A., Klimant, I., and Borisov, S.M., Sens. Actuators, B, 2020, vol. 3041, p. 127312. https://doi.org/10.1016/j.snb.2019.127312

    Article  CAS  Google Scholar 

  8. Fazial, F.F., Tan, L.L., and Zubairi, S.I., Sens. Actuators, B, 2018, vol. 269, p. 36. https://doi.org/10.1016/j.snb.2018.04.141

    Article  CAS  Google Scholar 

  9. Zaragozá, P., Fernández-Segovia, I., Fuentes, A., Vivancos, J., Ros-Lis, J.V., Barat, J.M., and Martínez-Máñez, R., Sens. Actuators, B, 2014, vol. 195, p. 478. https://doi.org/10.1016/j.snb.2014.01.017

    Article  CAS  Google Scholar 

  10. Yang, Z., Bai, X., Ma, S., Liu, X., Zhao, S., and Yang, Z., Anal. Methods, 2017, vol. 9, no. 1, p. 18. https://doi.org/10.1039/c6ay02660e

    Article  CAS  Google Scholar 

  11. Wang, R., Diao, L., Ren, Q., Liu, G., and Pu, S., ACS Omega, 2019, vol. 4, no. 1, p. 309. https://doi.org/10.1021/acsomega.8b02539

    Article  CAS  Google Scholar 

  12. Wu, L., Sedgwick, A.C., Sun, X., Bull, S.D., He, X.-P., and James, T.D., Acc. Chem. Res., 2019, vol. 52, p. 2582. https://doi.org/10.1021/acs.accounts.9b00302

  13. Hydrogen-Transfer Reactions, Hynes, J.T., Klinman, J.P., Limbach, H.-H., and Schowen, R.L., Eds., Weinheim: Wiley, 2007, vols. 1–4. https://doi.org/10.1002/9783527611546

  14. Weller, A., Naturwissenschaften, 1955, vol. 42, no. 7, p. 175. https://doi.org/10.1007/BF00595299

    Article  CAS  Google Scholar 

  15. Weller, A., Z. Phys. Chem., 1958, vol. 17, nos. 3–4, p. 224. https://doi.org/10.1524/zpch.1958.17.3_4.224

    Article  CAS  Google Scholar 

  16. Weller, A., Z. Elektrochem., 1956, vol. 60, nos. 9–10, p. 1144. https://doi.org/10.1002/bbpc.19560600938

    Article  CAS  Google Scholar 

  17. Eigen, M., Angew. Chem., 1964, vol. 3, no. 1, p. 1. https://doi.org/10.1002/anie.196400011

    Article  Google Scholar 

  18. Wan, P. and Shukla, D., Chem. Rev., 1993, vol. 93, no. 1, p. 571. https://doi.org/10.1021/cr00017a024

    Article  CAS  Google Scholar 

  19. Das, A., Ayad, S., and Hanson, K., Org. Lett., 2016, vol. 18, no. 20, p. 5416. https://doi.org/10.1021/acs.orglett.6b02820

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y., Feng, X., Wang, A., Yang, Y., Fei, J., Sun, B., Jia, Y., and Li, J., Angew. Chem., Int. Ed. Engl., 2019, vol. 58, p. 796. https://doi.org/10.1002/anie.201812582

    Article  CAS  Google Scholar 

  21. Cohen, B., Martin Álvarez, C., Alarcos Carmona, N., Organero, J.A., and Douhal, A., J. Phys. Chem. B, 2011, vol. 115, p. 7637. https://doi.org/10.1021/jp200294q

    Article  CAS  PubMed  Google Scholar 

  22. Simkovitch, R., Shomer, S., Gepshtein, R., and Huppert, D., J. Phys. Chem. B, 2015, vol. 119, no. 6, p. 2253. https://doi.org/10.1021/jp506011e

    Article  CAS  PubMed  Google Scholar 

  23. Naumova, A.O., Mel’nikov, P.V., Dolganova, E.V., Yashtulov, N.A., and Zaitsev, N.K., Tonkie Khim. Tekhnol., 2020, vol. 15, no. 4, p. 59. https://doi.org/10.32362/2410-6593-2020-15-4-59-70

    Article  CAS  Google Scholar 

  24. El-Ashgar, N.M., El-Basioni, A.I., El-Nahhal, I.M., Zourob, S.M., El-Agez, T.M., Sofyan, A., and Taya, S.A., Int. Scholarly Res. Not., 2012, vol. 2012, 604389. https://doi.org/10.5402/2012/604389

    Article  CAS  Google Scholar 

  25. Mohr, G.J., Sens. Actuators, B, 2018, vol. 275, p. 439. https://doi.org/10.1016/j.snb.2018.07.095

    Article  CAS  Google Scholar 

  26. Wang, H., Liu, B., Li, Z., and Yang, L., Spectrosc. Lett., 2017, vol. 50, no. 6, p. 307. https://doi.org/10.1080/00387010.2017.1321019

    Article  CAS  Google Scholar 

  27. Melnikov, P.V., Naumova, A.O., Alexandrovskaya, A.Yu., and Zaitsev, N.K., Nanotechnol. Russ., 2018, vol. 13, nos. 11–12, p. 602. https://doi.org/10.1134/S1995078018060083

    Article  CAS  Google Scholar 

  28. Gerasimova, M.A., Tomilin, F.N., Malyara, E.Yu., Varganov, S.A., Fedorov, D.G., Ovchinnikov, S.G., and Slyusareva, E.A., Dyes Pigments, 2020, vol. 173, 107851. https://doi.org/10.1016/j.dyepig.2019.107851

    Article  CAS  Google Scholar 

  29. Tolbert, L.M. and Solntsev, K.M., Acc. Chem. Res., vol. 35, no. 1, p. 19. https://doi.org/10.1021/ar990109f

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment of the Center for Joint Use of MIREA—Russian Technological University.

Funding

The study was carried out within the framework of the state assignment of the Russian Federation (in accordance with theme no. 0706-2020-0020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Naumova.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by G. Levit

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumova, A.O., Mugabutaeva, A.S., Melnikov, P.V. et al. Photoprotolytic Reactions in Systems Immobilized on Silica Gel Using a Cationic Polyelectrolyte. Moscow Univ. Chem. Bull. 76, 14–20 (2021). https://doi.org/10.3103/S0027131421010090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131421010090

Keywords:

Navigation