Skip to main content
Log in

Photochemistry of Oxirane-Derived Radical Cations in Freonic Matrices at 77 K

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

The data on the structure and the features of the photochemical reactions for radical cations (RCs) derived from various oxiranes (epoxides) that can be stabilized in Freon matrices at 77 K are summarized. The nature of the RCs and the products of their photochemical transformations have been determined via quantum chemistry, electron paramagnetic resonance (EPR) and low-temperature UV/Vis spectroscopy. For the RCs, it is shown that, depending on the structure of the precursor molecule, transitions between their ring-open and ring-closed forms, deprotonation reactions affording C-centered radicals and more complex transformations can take place when exposed to light. Possible explanations of the observed effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The paramagnetic centers formed upon the X-ray irradiation of cis- and trans-2,3-DMO/Freons solutions at 77 K (detected via EPR and UV/Vis spectroscopy) as well as the character of their mutual thermally induced and photochemical transformations are identical. Further on we will not specify whether cis- or trans-isomers were used since the obtained results were identical for those two substrates.

  2. At the edges of the EPR spectra, there are additional low-intensity components of multiplet EPR signals, not clearly seen in Figs. 3 or 5. These can be seen at higher gains.

REFERENCES

  1. Snow, L.D. and Williams, F., Chem. Phys. Lett., 1988, vol. 143, p. 521.

    Article  CAS  Google Scholar 

  2. Qin, X.-Zh., Snow, L.D., and Williams, F., J. Phys. Chem., 1985, vol. 89, p. 3602.

    Article  CAS  Google Scholar 

  3. Rideout, J., Symons, M.C.R., and Wren, B.W., J. Chem. Soc., Faraday Trans., 1986, vol. 82, p. 167.

    Article  CAS  Google Scholar 

  4. Ushida, K., Shida, T., and Shimokoshi, K., J. Phys. Chem., 1989, vol. 93, p. 5388.

    Article  CAS  Google Scholar 

  5. Miller, W.T., Fager, E.W., and Griswald, P.H., J. Am. Chem. Soc., 1950, vol. 72, p. 705.

    Article  CAS  Google Scholar 

  6. Neese, F., Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, vol. 2, p. 73.

    CAS  Google Scholar 

  7. Weigend, F. and Ahlrichs, R., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3297.

    Article  CAS  Google Scholar 

  8. Barone, V., Cimino, P., and Stendardo, E., J. Chem. Theory Comput., 2008, vol. 4, p. 751.

    Article  CAS  Google Scholar 

  9. Sinnecker, S., Rajendran, A., Klamt, A., Diedenhofen, M., and Neese, F., J. Phys. Chem. A, 2006, vol. 110, p. 2235.

    Article  CAS  Google Scholar 

  10. Sorokin, I.D., Feldman, V.I., Melnikova, O.L., Pergushov, V.I., Tyurin, D.A., and Melnikov, M.Ya., Mendeleev Commun., 2011, vol. 21, p. 153.

    Article  CAS  Google Scholar 

  11. Mel’nikov, M.Ya., Kalugina, A.D., Mel’nikova, O.L., Pergushov, V.I., and Tyurin, D.A., High Energy Chem., 2009, vol. 43, p. 303.

    Article  Google Scholar 

  12. Bosch, A., Luyckx, G., Kinnaes, A., Stienlet, D., and Ceulemans, J., J. Mol. Struct., 1990, vol. 128, p. 13.

    Article  Google Scholar 

  13. Holtzhauer, K., Cometta-Morini, C., and Oth, J.E.M., J. Phys. Org. Chem., 1990, vol. 3, p. 219.

    Article  CAS  Google Scholar 

  14. Clark, T., J. Chem. Soc., Chem. Commun., 1984, p. 666.

  15. Sorokin, I.D., Melnikova, O.L., Pergushov, V.I., Tyurin, D.A., Feldman, V.I., and Melnikov, M.Ya., High Energy Chem., 2012, vol. 46, p. 183.

    Article  CAS  Google Scholar 

  16. Bally, T., Nitsche, S., and Haselbach, E., Helv. Chim. Acta, 1984, vol. 67, p. 86.

    Article  CAS  Google Scholar 

  17. Sorokin, I.D., Gromov, O.I., Pergushov, V.I., Pomogailo, D.A., and Melnikov, M.Ya., Mendeleev Commun., 2018, vol. 28, p. 618.

    Article  CAS  Google Scholar 

  18. Fel’dman, V.I., Borzov, S.M., Sukhov, F.F., and Slovokhotov, P.A., Khim. Fiz., 1988, vol. 7.

  19. Fel’dman, V.I. and Mel’nikov, M., High Energy Chem., 2000, vol. 34, p. 236.

    Article  Google Scholar 

  20. Taletskiy, K.S., Borovkov, V.I., Shchegoleva, L.N., Beregovaya, I.V., Bagryansky, V.A., and Molin, Yu.N., Dokl. Phys. Chem., 2014, vol. 455, p. 41.

    Article  CAS  Google Scholar 

  21. Sorokin, I.D., Gromov, O.I., Pergushov, V.I., Pomogailo, D.A., and Melnikov, M.Ya., Mendeleev Commun., 2020, vol. 30, p. 67.

    Article  CAS  Google Scholar 

  22. Smith, P., Weathers, C.I., and Donovan, W.H., J. Magn. Reson., 1988, vol. 79, p. 124.

    CAS  Google Scholar 

  23. Sorokin, I.D., Pergushov, V.I., Savostina, L.I., and Melnikov, M.Ya., High Energy Chem., 2014, vol. 48, p. 180.

    Article  CAS  Google Scholar 

  24. Bühler, R.E. and Katsumura, Y., J. Phys. Chem. A, 1998, vol. 102, p. 111.

    Article  Google Scholar 

  25. Tabata, M. and Lund, A., Chem. Phys., 1983, vol. 75, p. 379.

    Article  CAS  Google Scholar 

  26. Radzig, V.A., Ustynyuk, L.Yu., Osokina, N.Yu., Pergushov, V.I., and Mel’nikov, M.Ya., J. Phys. Chem. A, 1998, vol. 102, p. 5220.

    Article  CAS  Google Scholar 

  27. Getty, J.D., Burmeister, M.J., Westre, S.G., and Kelly, P.B., J. Am. Chem. Soc., 1991, vol. 113, p. 801.

    Article  CAS  Google Scholar 

  28. Sjöqvist, L., Shiotani, M., and Lund, A., Chem. Phys., 1990, vol. 141, p. 417.

    Article  Google Scholar 

  29. Sadovnichy, V., Tikhonravov, A., Voevodin, Vl., and Opanasenko, V., in Contemporary High-Performance Computing: From Petascale toward Exascale, Boca Raton: CRC, 2013, p. 283.

    Google Scholar 

Download references

Funding

This work has been performed with financial support granted by the Russian Foundation for Basic Research (project 19-03-00015) with the use of equipment purchased on behalf of the Development Program of Moscow State University. Calculations have been performed using the resources of the Supercomputing Center of Moscow State University [29].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Melnikov.

Ethics declarations

The authors declare that there is no conflict of interest in this manuscript.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, M.Y., Sorokin, I.D., Gromov, O.I. et al. Photochemistry of Oxirane-Derived Radical Cations in Freonic Matrices at 77 K. Moscow Univ. Chem. Bull. 76, 1–13 (2021). https://doi.org/10.3103/S0027131421010089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131421010089

Keywords:

Navigation