Skip to main content
Log in

Influence of Magnetic Field on Thermomechanical Optical Waves in a Semiconductor Medium with Porosity

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The manuscript provides a thorough solution for the propagation of waves in a generalized homogeneous and isotropic thermo-photo-electric semiconductor medium. The main focus lies in the analysis of the two-dimensional (2D) issue in the presence of a magnetic field while adding optoelectronic excitation mechanisms. The governing equations exhibit coupling and encompass multiple factors, including relaxation time and porosity (voids) parameters. The governing equations are solved utilizing the normal mode technique, resulting in equations for the quasi-static electric field, heat conduction, carrier density (plasma waves), elastic waves, and the constitutive relationships of the thermo-magneto-photo-electric medium. This investigation considers the boundary conditions of plasma, thermal, and mechanical stress to determine the main physical variables involved. The objective of this research is to examine the effects of several thermo-magneto-photo-electric models, characteristics related to porous structures (voids), as well as time and spatial coordinates on a range of physical quantities. The impacts are examined through the visual analysis of graphical representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. Hasselman and R. Heller, Thermal Stresses in Severe Environments (Plenum Press, New York, 1980).

    Book  Google Scholar 

  2. H. Youssef, “State-space on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating,” J. CAMQ Appl. Math. Inst. 13 (4), 369–390 (2005).

    MathSciNet  Google Scholar 

  3. H. Youssef and A. El-Bary, “Thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity,” Math. Probl. Eng. 2006, 87940 (2006). https://doi.org/10.1155/MPE/2006/87940

    Article  MathSciNet  Google Scholar 

  4. H. Youssef and I. Abbas, “Thermal shock problem of generalized thermoelasticity for an infinite long annular cylinder with variable thermal conductivity,” Comput. Methods Sci. Technol. 13 (2), 95–100 (2007). https://doi.org/10.12921/cmst.2007.13.02.95-100

    Article  Google Scholar 

  5. D. Todorović, P. Nikolić, and A. Bojičić, “Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors,” J. Appl. Phys. 85, 7716–7726 (1999). https://doi.org/10.1063/1.370576

    Article  ADS  Google Scholar 

  6. J. Gordon, R. Leite, R. S. Moore, et al., “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). https://doi.org/10.1063/1.1713919

    Article  ADS  Google Scholar 

  7. L. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971). https://doi.org/10.1063/1.1660651

    Article  ADS  Google Scholar 

  8. A. Tam, “Photoacoustic: spectroscopy and other applications,” in Ultrasensitive Laser Spectroscopy, Ed. by D. S. Kliger (Academic Press, New York, 1983), pp. 1–108.

    Google Scholar 

  9. A. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).

    Article  ADS  Google Scholar 

  10. A. Tam, “Overview of photothermal spectroscopy,” in Photothermal Investigations in Solids and Fluids (Academic Press., Boston, 1989), pp. 1–34. https://doi.org/10.1016/B978-0-12-636345-6.50005-0

    Book  Google Scholar 

  11. A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, “Detection of thermal waves through optical reflectance,” Appl. Phys. Lett. 46, 1013 (1985). https://doi.org/10.1063/1.95794

    Article  ADS  Google Scholar 

  12. J. Opsa and A. Rosencwaig, “Thermal wave depth profiling: theory,” J. Appl. Phys. 53, 4240–8 (1982).

    Article  ADS  Google Scholar 

  13. Y. Song, D. Todorovic, B. Cretin, et al., “Study on the generalized thermoelastic vibration of the optically excited semiconducting micro- cantilevers,” Int. J. Solids Struct. 47, 1871–1885 (2010).

    Article  Google Scholar 

  14. Kh. Lotfy and M. Gabr, “Response of a semiconducting infinite medium under two temperature theory with photothermal excitation due to laser pulses,” Opt. Laser Technol. 97, 198–208 (2017). https://doi.org/10.1016/j.optlastec.2017.06.021

    Article  ADS  Google Scholar 

  15. Kh. Lotfy, R. Kumar, W. Hassan, and M. Gabr, “Thermomagnetic effect with microtemperature in a semiconducting photothermal excitation medium,” Appl. Math. Mech. Eng. Ed. 39 (6), 783–796 (2018). https://doi.org/10.1007/s10483-018-2339-9

    Article  MathSciNet  Google Scholar 

  16. M. Marin and G. Stan, “Weak solutions in elasticity of dipolar bodies with stretch,” Carpathian J. Math. 29 (1), 33-40 (2013).

    Article  MathSciNet  Google Scholar 

  17. B. Straughan, “Stability and uniqueness in double porosity elasticity,” Int. J. Eng. Sci. 65, 1–8 (2013). https://doi.org/10.1016/j.ijengsci.2013.01.001

    Article  MathSciNet  Google Scholar 

  18. I. Abbas and M. Marin, “Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse,” Iranian J. Sci. Technol. Trans. Mech. Eng. 42 (1), 57–71 (2018). https://doi.org/10.1007/s40997-017-0077-1

    Article  Google Scholar 

  19. M. Othman, R. Tantawi, and E. Abd-Elaziz, “Effect of initial stress on a thermoelastic medium with voids and microtemperatures,” J. Porous Media 19 (2), 155–172 (2016). https://doi.org/10.1615/JPorMedia.v19.i2.40

  20. S. Cowin and J. Nunziato, “Linear theory of elastic materials with voids,” J. Elasticity 13, 125–147 (1983). https://doi.org/10.1007/BF00041230

    Article  Google Scholar 

  21. R. Dhaliwal and J. Wang, “Domain of influence theorem in the theory of elastic materials with voids,” Int. J. Eng. Sci. 32 (11), 1823–1828 (1994). https://doi.org/10.1016/0020-7225(94)90111-2

    Article  MathSciNet  Google Scholar 

  22. A. Saeed, Kh. Lotfy, and M. Ahmed, “Magnetic field influence of photo-mechanical-thermal waves for optically excited microelongated semiconductor,” Math. 10 (23), 4567 (2022). https://doi.org/10.3390/math10234567

  23. S. Mondal and A. Sur, “Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses,” Waves Rand. Complex Media 31 (6), 1835–1858 (2021). https://doi.org/10.1080/17455030.2019.1705426

    Article  MathSciNet  Google Scholar 

  24. S. El-Sapa, M. Mohamed, Kh. Lotfy, et al. “A mechanical ramp type of electron–hole semiconducting model with laser pulses and variable thermal conductivity,” Acta Mech. 233, 4641–4658 (2022). https://doi.org/10.1007/s00707-022-03342-z

    Article  MathSciNet  Google Scholar 

  25. A. Mahdy, “Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo–Fabrizio derivative,” Math. Meth. Appl. Sci. 1–18 (2023). https://doi.org/10.1002/mma.9038

  26. A. Zenkour and I. Abbas, “Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model,” Int. J. Struct. Stab. Dyn. 14 (7), 1450025 (2014). https://doi.org/10.1142/S0219455414500254

  27. D. Todorović, P. Nikolić, and A. Bojičić, “Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors,” J. Appl. Phys. 85, 7716–7726 (1999). https://doi.org/10.1063/1.370576

    Article  ADS  Google Scholar 

  28. L. Zelenyi and A. Milovanov, “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics,” Fiz. Usp. 174 (8), 749–788 (2004). https://doi.org/10.1070/PU2004v047n08ABEH001705

    Article  Google Scholar 

  29. V. Filatov, “On some inverse problems in fractal medium,” in Int. Conf. “Inverse and Ill-Posed Problems of Mathematical Physics”, Novosibirsk, Russia, August, 20-25 (Novosibirsk, 2007).

  30. M. Ciesielski and J. Leszczynski, “Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional operator,” J. Theor. Appl. Mech. 44 (2), 393–403 (2006).

    Google Scholar 

  31. W. Chen and S. Holm, “Fractional laplacian timespace models for linear and nonlinear lossy media exhibiting arbitrary frequency dependency,” J. Acoust. Soc. Am. 115 (4), 1424–1430 (2004). https://doi.org/10.1121/1.1646399

    Article  ADS  Google Scholar 

  32. S. Hosseini, J. Sladek, and V. Sladek, “Nonlocal coupled photo-thermoelasticity analysis in a semiconducting micro/nano beam resonator subjected to plasma shock loading: A Green-Naghdi-based analytical solution,” App. Math. Modell. 88, 631–651 (2020). https://doi.org/10.1016/j.apm.2020.06.069

    Article  MathSciNet  Google Scholar 

  33. S. Hosseini and C. Zhang, “Plasma-affected photo-thermoelastic wave propagation in a semiconductor Love–Bishop nanorod using strain-gradient Moore–Gibson–Thompson theories,” Thin-Walled Struct. 179, 109480 (2022). https://doi.org/10.1016/j.tws.2022.109480

  34. M. Ezzat and H. Youssef, “A thermal and thermal stress analysis in thermoelectric solid under the influence of thomson effect,” J. Thermoelast. 1 (2), 4–121 (2013).

    Google Scholar 

  35. A. Mandelis, M. Nestoros, and C. Christofides, “Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures,” Opt. Eng. 36 (2), 459–468 (1997). https://doi.org/10.1117/1.601217

    Article  ADS  Google Scholar 

  36. H. Yépez-Martínez, J. Gómez-Aguilar, and D. Baleanu, “Beta-derivative and sub-equation method applied to the optical solutions in medium with parabolic law nonlinearity and higher order dispersion,” Optics 155, 357–65 (2018). https://doi.org/10.1016/j.ijleo.2017.10.104

    Article  ADS  Google Scholar 

  37. Kh. Lotfy, “A novel model for photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field,” Sci. Rep. 9, 3319 (2019). https://doi.org/10.1038/s41598-019-39955-z

    Article  ADS  Google Scholar 

  38. A. Rasheed and M. Anwar, “Interplay of chemical reacting species in a fractional viscoelastic fluid flow,” J. Mol. Liq. 273, 576–588 (2019). https://doi.org/10.1016/j.molliq.2018.10.028

    Article  Google Scholar 

  39. C. Christofides, A. Othonos, and E. Loizidou, “Influence of temperature and modulation frequency on the thermal activation coupling term in laser photothermal theory,” J. Appl. Phys. 92, 1280–1289 (2002). https://doi.org/10.1063/1.1484232

    Article  ADS  Google Scholar 

  40. A. Hobiny and I. Abbas, “A GN model on photothermal interactions in a two-dimensions semiconductor half space,” Results Phys. 15, 102588 (2019). https://doi.org/10.1016/j.rinp.2019.102588

  41. J. Liu, M. Han, R. Wang, et al., “Photothermal phenomenon: Extended ideas for thermophysical properties characterization,” J. Appl. Phys. 131, 065107 (2022). https://doi.org/10.1063/5.0082014

  42. H. Youssef and A. El-Bary, “Two-temperature generalized thermoelasticity with variable thermal conductivity,” J. Thermal Stress. 33, 187–201 (2010). https://doi.org/10.1080/01495730903454793

    Article  Google Scholar 

  43. A. M. S. Mahdy, M. S. Mohamed, Kh. Lotfy, et al., “Numerical solution and dynamical behaviors for solving fractional nonlinear Rubella ailment disease model,” Results Phys. 24, 104091 (2021). https://doi.org/10.1016/j.rinp.2021.104091

  44. A. M. S. Mahdy, Kh. Lotfy, and A. El-Bary, “Use of optimal control in studying the dynamical behaviors of fractional financial awareness models,” Soft Comput. 26, 3401–3409 (2022). https://doi.org/10.1007/s00500-022-06764-y

    Article  Google Scholar 

  45. A. M. S. Mahdy, K. Gepreel, Kh. Lotfy, and A. El-Bary, “A numerical method for solving the Rubella ailment disease modelþ,” Int. J. Modern Phys C 32 (07), 2150097 (2021). https://doi.org/10.1142/S0129183121500972

Download references

ACKNOWLEDGMENTS

The authors extend their appreciation to Princess Nourah bint Abdulrahman University for fund this research under Researchers Supporting progect no. (PNURSP2023R154) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Merfat H. Raddadi, Shreen El-Sapa, Abdulkafi M. Saeed, Alaa El-Bary or Khaled Lotfy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

The primary variables of Eqs. (20)–(35) can be represented as

$${{q}_{1}} = \frac{{kt{\text{*}}}}{{\rho {{c}_{E}}{{D}_{E}}}},\quad {{q}_{2}} = \frac{k}{{\rho {{c}_{E}}{{D}_{E}}}},\quad {{\varepsilon }_{3}} = \frac{{\kappa K{{\delta }_{n}}t{\text{*}}}}{{\gamma \rho {{c}_{E}}{{D}_{E}}}},\quad {{a}_{1}} = \frac{{\mu + \lambda }}{{\rho c_{T}^{2}}},\quad {{a}_{2}} = \frac{{k + \mu }}{{\rho c_{T}^{2}}},$$
$${{a}_{3}} = \frac{{2\mu + \lambda }}{{\rho c_{T}^{2}}}(1 + {{{v}}_{o}}\omega ),\quad {{a}_{4}} = \frac{{2\mu + \lambda }}{{\rho c_{T}^{2}}},\quad {{a}_{5}} = {{\mu }_{0}}{{\sigma }_{0}}{{H}_{0}},\quad {{a}_{6}} = \frac{{\mu _{0}^{2}{{\sigma }_{0}}{{H}_{0}}kt{\text{*}}}}{{{{\rho }^{2}}{{c}_{E}}}},$$
$${{a}_{7}} = \frac{{{{\mu }_{0}}{{H}_{0}}t{\text{*}}}}{\rho },\quad {{a}_{8}} = \frac{{\rho {{c}_{E}}c_{T}^{2}t{\text{*}}}}{K}({{n}_{1}} + {{\tau }_{o}}\omega ),\quad {{a}_{9}} = \frac{{{{\gamma }^{2}}{{T}_{0}}t{\text{*}}c_{T}^{2}}}{{(2\mu + \lambda )K}}({{n}_{1}} + {{n}_{o}}{{\tau }_{o}}\omega ),$$
$${{a}_{{10}}} = \frac{{{{E}_{g}}\gamma t{{{\text{*}}}^{2}}c_{T}^{2}}}{{\tau {{\delta }_{n}}{{K}^{2}}}},\quad {{a}_{{11}}} = \frac{{2\mu + \lambda }}{\mu },\quad {{a}_{{12}}} = \frac{\lambda }{\mu },\quad {{a}_{{13}}} = \frac{{2\mu + \lambda }}{\mu }(1 + {{{v}}_{o}}\omega ),$$
$${{a}_{{14}}} = \frac{{{{d}_{n}}(2\mu + \lambda )}}{{\mu {{\delta }_{n}}}}(2\mu + 3\lambda ),\quad {{a}_{{15}}} = \frac{{\rho {{c}_{E}}t{\text{*}}c_{T}^{2}}}{{{{\sigma }_{0}}k}},\quad {{a}_{{16}}} = {{\mu }_{0}}t{\text{*}}c_{T}^{2},\quad {{b}_{1}} = {{\mu }_{0}}{{\varepsilon }_{0}}c_{T}^{2},$$
$${{b}_{2}} = \frac{{{{\lambda }_{o}}}}{{\psi \rho t{{{\text{*}}}^{2}}}},\quad {{b}_{4}} = \frac{{{{b}_{2}}}}{{{{a}_{1}} + {{a}_{2}}}},\quad {{b}_{5}} = \frac{{{{\gamma }^{2}}{{T}_{0}}c_{T}^{4}}}{{(2\mu + \lambda )Kt{\text{*}}\psi }},\quad {{b}_{8}} = \frac{{(2\mu + \lambda ){{\lambda }_{o}}\psi t{{{\text{*}}}^{4}}}}{\alpha },$$
$${{b}_{6}} = \frac{{\rho {{\psi }^{2}}t{{{\text{*}}}^{2}}}}{\alpha }{{\omega }^{2}} + \frac{{{{\omega }_{o}}\psi t{{{\text{*}}}^{3}}}}{\alpha }\omega - \frac{{{{\varsigma }_{1}}\psi t{{{\text{*}}}^{4}}}}{\alpha },\quad {{b}_{7}} = \frac{{{{\lambda }_{o}}\psi t{{{\text{*}}}^{4}}}}{\alpha },\quad {{b}_{9}} = \frac{{{{\lambda }_{o}}c_{T}^{2}}}{{\mu \psi t{{{\text{*}}}^{2}}}},$$
$${{b}_{{10}}} = 1 + \frac{{\mu + k}}{\mu },\quad {{b}_{{11}}} = \frac{{\mu + k}}{\mu },\quad {{b}_{{12}}} = {{b}_{5}}\omega ,\quad {{\alpha }_{{10}}} = {{b}^{2}} + {{b}_{6}},$$
$${{a}_{{17}}} = \frac{1}{{{{a}_{1}} + {{a}_{2}}}},\quad {{a}_{{18}}} = \frac{{{{a}_{3}}}}{{{{a}_{1}} + {{a}_{2}}}},\quad {{a}_{{19}}} = \frac{{{{a}_{4}}}}{{{{a}_{1}} + {{a}_{2}}}},\quad {{a}_{{20}}} = \frac{{{{a}_{5}}{{a}_{7}}}}{{{{a}_{1}} + {{a}_{2}}}},\quad {{a}_{{21}}} = \frac{{{{a}_{5}}{{a}_{6}}}}{{{{a}_{1}} + {{a}_{2}}}},$$
$${{a}_{{22}}} = \frac{\rho }{\mu },\quad {{a}_{{24}}} = {{\sigma }_{0}}({{a}_{{15}}} - {{a}_{{16}}}{{\mu }_{0}}{{H}_{0}}),\quad {{a}_{{25}}} = {{a}_{{17}}}{{\mu }_{0}}{{H}_{0}},\quad {{\alpha }_{1}} = {{b}^{2}} + {{q}_{1}} + {{q}_{2}}\omega ,$$
$${{\alpha }_{2}} = 2{{b}^{2}} + {{a}_{{20}}}\omega + {{a}_{{17}}}{{\omega }^{2}},\quad {{\alpha }_{3}} = {{b}^{4}} + {{b}^{2}}{{a}_{{20}}}\omega + {{b}^{2}}{{a}_{{17}}}{{\omega }^{2}},$$
$${{\alpha }_{4}} = {{a}_{{21}}}\omega ,\quad {{\alpha }_{5}} = {{b}^{2}} + {{a}_{{22}}}{{\omega }^{2}},\quad {{\alpha }_{7}} = {{b}^{2}} + {{a}_{8}}\omega ,\quad {{\alpha }_{8}} = {{a}_{9}}\omega ,\quad {{\alpha }_{9}} = {{a}_{{24}}}\omega - {{a}_{{25}}}{{\omega }^{2}}.$$

The main parameters in Eqs. (64–71) can be expressed as

$$h_{0}^{*} = {{h}_{0}}{{e}^{{ - (\omega t + ibz)}}},\quad \sigma _{0}^{*} = {{\sigma }_{0}}{{e}^{{ - (\omega t + ibz)}}},$$
$${{r}_{n}} = {{a}_{{11}}}k_{n}^{2} - {{a}_{{12}}}{{b}^{2}} - {{a}_{{13}}}{{H}_{{2n}}} + {{a}_{{14}}}{{H}_{{3n}}} + {{b}_{9}}{{H}_{{4n}}};\quad n = 2,3,4,5,6$$
$${{r}_{1}} = - ib{{k}_{1}}({{a}_{{12}}} - {{a}_{{11}}}),$$
$${{S}_{1}} = {{b}_{{11}}}k_{1}^{2} + {{b}^{2}},$$
$${{S}_{n}} = - ib{{k}_{n}}{{b}_{{10}}};\quad n = 2,3,4,5,6$$
$${{C}_{n}} = \left( {\frac{s}{{{{D}_{E}}}} + {{k}_{n}}} \right){{H}_{{3n}}};\quad n = 2,3,4,5,6.$$

Calculating the values of the fundamental coefficients in equation (36), which can be done with software like Mathematica and Matlab, is as simple as doing the following

$${{A}_{1}} = {{a}_{{18}}}{{\alpha }_{8}} - {{b}_{3}}{{b}_{7}} + {{\alpha }_{1}} + {{\alpha }_{2}} + {{\alpha }_{7}} + {{\alpha }_{{10}}},$$
$$\begin{gathered} {{A}_{2}} = 2{{b}^{2}}{{a}_{{18}}}{{\alpha }_{8}} - 2{{b}^{2}}{{b}_{3}}{{b}_{7}} + {{a}_{{18}}}{{\alpha }_{1}}{{\alpha }_{8}} + {{a}_{{18}}}{{\alpha }_{{10}}}{{\alpha }_{8}} - {{a}_{{18}}}{{b}_{{12}}}{{b}_{7}} + {{a}_{{19}}}{{\alpha }_{8}}{{\varepsilon }_{3}} - {{\alpha }_{1}}{{b}_{3}}{{b}_{7}} \\ \, - {{\alpha }_{7}}{{b}_{3}}{{b}_{7}} - {{\alpha }_{8}}{{b}_{3}}{{b}_{8}} - {{a}_{{10}}}{{\varepsilon }_{3}} + {{\alpha }_{1}}{{\alpha }_{2}} + {{\alpha }_{1}}{{\alpha }_{7}} + {{\alpha }_{1}}{{\alpha }_{{10}}} + {{\alpha }_{2}}{{\alpha }_{7}} + {{\alpha }_{2}}{{\alpha }_{{10}}} - {{\alpha }_{4}}{{\alpha }_{9}} \\ + \,{{\alpha }_{7}}{{\alpha }_{{10}}} + {{b}_{{12}}}{{b}_{8}} - {{\alpha }_{3}}, \\ \end{gathered} $$
$$\begin{gathered} {{A}_{3}} = {{b}^{4}}{{a}_{{18}}}{{\alpha }_{8}} - {{b}^{4}}{{b}_{3}}{{b}_{7}} + 2{{b}^{2}}{{a}_{{18}}}{{\alpha }_{1}}{{\alpha }_{8}} + 2{{b}^{2}}{{a}_{{18}}}{{\alpha }_{{10}}}{{\alpha }_{8}} - 2{{b}^{2}}{{a}_{{18}}}{{b}_{{12}}}{{b}_{7}} + 2{{b}^{2}}{{a}_{{19}}}{{\alpha }_{8}}{{\varepsilon }_{3}} - 2{{b}^{2}}{{\alpha }_{1}}{{b}_{3}}{{b}_{7}} \\ - \,2{{b}^{2}}{{\alpha }_{7}}{{b}_{3}}{{b}_{7}} - 2{{b}^{2}}{{\alpha }_{8}}{{b}_{3}}{{b}_{8}} + {{a}_{{10}}}{{b}_{3}}{{b}_{7}}{{\varepsilon }_{3}} - {{b}_{{12}}}{{a}_{{18}}}{{\alpha }_{1}}{{\alpha }_{7}} + {{a}_{{18}}}{{\alpha }_{1}}{{\alpha }_{8}}{{\alpha }_{{10}}} + {{a}_{{19}}}{{\alpha }_{8}}{{\alpha }_{{10}}}{{\varepsilon }_{3}} - {{a}_{{19}}}{{b}_{{12}}}{{b}_{7}}{{\varepsilon }_{3}} \\ - \,{{b}_{3}}{{b}_{7}}{{\alpha }_{1}}{{\alpha }_{7}} - {{\alpha }_{1}}{{\alpha }_{8}}{{b}_{3}}{{b}_{8}} - {{a}_{{10}}}{{\alpha }_{2}}{{\varepsilon }_{3}} - {{a}_{{10}}}{{\alpha }_{{10}}}{{\varepsilon }_{3}} + {{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{7}} + {{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{{10}}} - {{\alpha }_{1}}{{\alpha }_{4}}{{\alpha }_{9}} + {{\alpha }_{1}}{{\alpha }_{7}}{{\alpha }_{{10}}} + {{\alpha }_{1}}{{b}_{{12}}}{{b}_{8}} \\ - \,{{\alpha }_{2}}{{\alpha }_{7}}{{\alpha }_{{10}}} + {{\alpha }_{2}}{{b}_{{12}}}{{b}_{8}} - {{\alpha }_{7}}{{\alpha }_{4}}{{\alpha }_{9}} - {{\alpha }_{{10}}}{{\alpha }_{4}}{{\alpha }_{9}} - {{\alpha }_{1}}{{\alpha }_{3}} - {{\alpha }_{3}}{{\alpha }_{7}} - {{\alpha }_{3}}{{\alpha }_{{10}}}, \\ \end{gathered} $$
$$\begin{gathered} {{A}_{4}} = {{b}^{4}}{{a}_{{18}}}{{\alpha }_{1}}{{\alpha }_{8}} + {{b}^{4}}{{a}_{{18}}}{{\alpha }_{8}}{{\alpha }_{{10}}} - {{b}^{4}}{{a}_{{18}}}{{b}_{7}}{{b}_{{12}}} + {{b}^{4}}{{a}_{{19}}}{{\alpha }_{8}}{{\varepsilon }_{3}} - {{b}^{4}}{{a}_{1}}{{b}_{3}}{{b}_{7}} - {{b}^{4}}{{a}_{7}}{{b}_{7}}{{b}_{3}} \\ - \,{{b}^{4}}{{a}_{8}}{{b}_{3}}{{b}_{8}} + 2{{b}^{2}}{{a}_{{10}}}{{b}_{3}}{{b}_{7}}{{\varepsilon }_{3}} - 2{{b}^{2}}{{b}_{{12}}}{{a}_{{18}}}{{\alpha }_{1}}{{\alpha }_{7}} + 2{{b}^{2}}{{a}_{{18}}}{{\alpha }_{1}}{{\alpha }_{8}}{{\alpha }_{{10}}} + 2{{b}^{2}}{{a}_{{19}}}{{\alpha }_{8}}{{\alpha }_{{10}}}{{\varepsilon }_{3}} - 2{{b}^{2}}{{a}_{{19}}}{{b}_{{12}}}{{b}_{7}}{{\varepsilon }_{3}} \\ - \,2{{b}^{2}}{{b}_{3}}{{b}_{7}}{{\alpha }_{1}}{{\alpha }_{7}} - 2{{b}^{2}}{{\alpha }_{1}}{{\alpha }_{8}}{{b}_{3}}{{b}_{8}} - {{a}_{{10}}}{{\alpha }_{4}}{{\alpha }_{9}}{{\varepsilon }_{3}} + {{\alpha }_{{10}}}{{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{7}} + {{\alpha }_{1}}{{\alpha }_{2}}{{b}_{8}}{{b}_{{12}}} - {{\alpha }_{1}}{{\alpha }_{4}}{{\alpha }_{7}}{{\alpha }_{9}} \\ - \,{{\alpha }_{1}}{{\alpha }_{4}}{{\alpha }_{9}}{{\alpha }_{{10}}} - {{\alpha }_{4}}{{\alpha }_{7}}{{\alpha }_{9}}{{\alpha }_{{10}}} - {{\alpha }_{4}}{{\alpha }_{9}}{{b}_{8}}{{b}_{{12}}} + {{a}_{{10}}}{{\alpha }_{3}}{{\varepsilon }_{3}} - {{\alpha }_{1}}{{\alpha }_{3}}{{\alpha }_{7}} - {{\alpha }_{1}}{{\alpha }_{3}}{{\alpha }_{{10}}} - {{\alpha }_{3}}{{\alpha }_{7}}{{\alpha }_{{10}}} - {{\alpha }_{3}}{{b}_{8}}{{b}_{{12}}}, \\ \end{gathered} $$
$$\begin{gathered} {{A}_{5}} = {{b}^{4}}{{a}_{{10}}}{{b}_{7}}{{b}_{3}}{{\varepsilon }_{3}} + {{b}^{4}}{{a}_{{18}}}{{\alpha }_{8}}{{\alpha }_{{10}}} - {{b}^{4}}{{a}_{{18}}}{{\alpha }_{1}}{{\alpha }_{8}}{{\alpha }_{{10}}}{{\varepsilon }_{3}} - {{b}^{4}}{{a}_{{19}}}{{b}_{{12}}}{{b}_{7}}{{\varepsilon }_{3}} - {{b}^{4}}{{a}_{1}}{{b}_{3}}{{b}_{7}}{{\alpha }_{7}} \\ - \,{{b}^{4}}{{\alpha }_{1}}{{\alpha }_{8}}{{b}_{3}}{{b}_{8}} + {{a}_{{10}}}{{\alpha }_{4}}{{\alpha }_{9}}{{\alpha }_{{10}}}{{\varepsilon }_{3}} - {{\alpha }_{1}}{{\alpha }_{4}}{{\alpha }_{7}}{{\alpha }_{9}}{{\alpha }_{{10}}} - {{\alpha }_{1}}{{\alpha }_{4}}{{\alpha }_{9}}{{b}_{8}}{{b}_{{12}}} + {{a}_{{10}}}{{\alpha }_{3}}{{\alpha }_{{10}}}{{\varepsilon }_{3}} - {{\alpha }_{1}}{{\alpha }_{3}}{{\alpha }_{7}}{{\alpha }_{{10}}} - {{\alpha }_{1}}{{\alpha }_{3}}{{b}_{8}}{{b}_{{12}}}. \\ \end{gathered} $$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raddadi, M.H., El-Sapa, S., Saeed, A.M. et al. Influence of Magnetic Field on Thermomechanical Optical Waves in a Semiconductor Medium with Porosity. Mech. Solids 58, 3162–3176 (2023). https://doi.org/10.3103/S0025654423601994

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423601994

Keywords:

Navigation