Skip to main content
Log in

A Statistical Damage Constitutive Model of Hydrate-Bearing Sediments Based on DEM Tests with Flexible Membrane Boundaries

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In this paper, many numerical simulation tests of biaxial compression by the discrete element method (DEM) are carried out on the hydrate-bearing sediments. It should be noted that the flexible particle membrane boundaries are used in the DEM simulation tests instead of the rigid wall, which is more reasonable to reproduce the real failure mode of hydrate-bearing sediments. The mechanical properties and failure process of hydrate-bearing sediments during loading are analyzed from the macro and micro perspectives. According to the simulation test results, the formula for calculating the initial elastic modulus of hydrate-bearing sediments is established, through which the initial elastic modulus under specific conditions is determined. In addition, a statistical damage constitutive model, which is based on Weibull distribution and Drucker-Prager strength criterion, is developed to predict the micro mechanical behaviors of hydrate-bearing sediments. The parameters in the constitutive model are determined by the extreme value method. The results predicted by the constitutive model are in good agreement with the test results, which prove that the constitutive model is reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. S. Kimoto, F. Oka, and T. Fushita, “A chemo-thermos-mechanically coupled analysis of ground deformation induced by gas hydrate dissociation,” Int. J. Mech. Sci. 52, 365–376 (2010). https://doi.org/10.1016/j.ijmecsci.2009.10.008

    Article  MATH  Google Scholar 

  2. K. P. Lijith, B. R. C. Malagar, and D. N. Singh, “A comprehensive review on the geomechanical properties of gas hydrate bearing sediments,” Mar. Petrol. Geol. 104, 270–285 (2019). https://doi.org/10.1016/j.marpetgeo.2019.03.024

    Article  ADS  Google Scholar 

  3. K. You, P. B. Flemings, A. Malinverno, et al., “Mechanisms of methane hydrate formation in geological systems,” Rev. Geophys. 57, 1146–1196 (2019). https://doi.org/10.1029/2018RG000638

    Article  ADS  Google Scholar 

  4. J. Mountjoy, I. Pecher, and S. Henrys, “Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand,” Geochem. Geophys. Geosyst. 15, 4137–4156 (2014). https://doi.org/10.1002/2014GC005379

    Article  ADS  Google Scholar 

  5. A. Klar, K. Soga, and M. Y. A. Ng, “Coupled deformation–flow analysis for methane hydrate extraction,” Geotech. 60, 765–776 (2010). https://doi.org/10.1680/geot.9.P.079-3799

    Article  Google Scholar 

  6. M. Sanchez, X. Gai, and J. C. Santamarina, “A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms,” Comput. Geotech. 84, 28–46 (2017). https://doi.org/10.1016/j.compgeo.2016.11.012

    Article  Google Scholar 

  7. K. Miyazaki, N. Tenma, K. Aoki, et al., “A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples,” Energies 5, 4057–4075 (2012). https://doi.org/10.3390/en5104057

    Article  Google Scholar 

  8. Y. C. Song, Y. Zhu, W. Liu, et al., “The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments,” J. Petrol. Sci. Eng. 147, 77–86 (2016). https://doi.org/10.1016/j.petrol.2016.05.009

    Article  Google Scholar 

  9. S. Uchida, X. G. Xie, Y. F. Leung, et al., “Role of critical state framework in understanding geomechanical behavior of methane hydrate bearing sediments,” J. Geophys. Res. Sol. Earth 121, 5580–5595 (2016). https://doi.org/10.1002/2016JB012967

    Article  ADS  Google Scholar 

  10. E. L. Wu, H. Z. Wei, R. T. Yan, et al., “Constitutive model for gas hydrate-bearing sediments considering damage,” Rock. Soil. Mech. 31, 3045–3050 (2012).

    Google Scholar 

  11. E. L. Wu, H. Z. Wei, H. Z. Wei, et al., “A statistical damage constitutive model of hydrate- bearing sediments,” Rock. Soil. Mech. 34, 60–65 (2013). https://doi.org/10.16285/j.rsm.2013.01.012

    Article  Google Scholar 

  12. R. T. Yan, W. Y. Liang, C. F. Wei, et al., “A constitutive model for gas hydrate-bearing sediments considering hydrate occurring habits,” Rock. Soil. Mech. 38, 10–18 (2017). https://doi.org/10.16285/j.rsm.2017.01.002

    Article  Google Scholar 

  13. X. H. Zhu, H. W. Sun, J. Z. Zhao, et al., “Damage constitutive model of equivalent variable elastic modulus for gas hydrate sediments,” Acta. Petrol. Sin. 40, 1085–1094 (2019). https://doi.org/10.7623/syxb201909006

    Article  Google Scholar 

  14. F. Wang, Z. Wang, D. Zhang, et al., “Statistical damage constitutive model based on self-consistent Eshelby method for natural gas hydrate sediments,” Energy Sci. Eng. 9, 2079–2098 (2021). https://doi.org/10.1002/ESE3.968

    Article  Google Scholar 

  15. J. Brugada, Y. P. Cheng, K. Soga, et al., “Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution,” Granul. Matter. 12, 517–525 (2010). https://doi.org/10.1007/s10035-010-0210-y

    Article  Google Scholar 

  16. H. Wang, Y. Chen, B. Zhou, et al., “Investigation of the effect of cementing ratio on the mechanical properties and strain location of hydrate-bearing sediments by using DEM,” J. Nat. Gas. Sci. Eng. 94, 104123 (2021). https://doi.org/10.1016/J.JNGSE.2021.104123

  17. J. W. Jung, J. C. Santamarina, and K. Soga, “Stress-strain response of hydrate-bearing sands: Numerical study using discrete element method simulations,” J. Geophys. Res. Sol. Earth 117, B04202 (2012). https://doi.org/10.1029/2011JB009040

  18. J. W. Liu, X. S. Li, X. Kou, et al., “Analysis of hydrate heterogeneous distribution effects on mechanical characteristics of hydrate-bearing sediments,” Energy Fuels 35, 4914–4924 (2021). https://doi.org/10.1021/ACS.ENERGYFUELS.0C04388

    Article  Google Scholar 

  19. A. Masui, H. Haneda, Y. Ogata, et al., “Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments,” in Proceedings of The Fifteenth (2005) International Offshore and Polar Engineering Conference, Seoul, South Korea, 2005, Ed. by J. S. Chung, S. W. Hong, J. Koo, et al. (Seoul, 2005), pp. 364–369.

  20. S. Uchida, S. Kenichi, and Y. Koji. “Critical state soil constitutive model for methane hydrate soil,” J. Geophys. Res. Sol. Earth 117 (B3), 1–13 (2012). https://doi.org/10.1029/2011JB008661

    Article  Google Scholar 

  21. A. Masui, H. Haneda, Y. Ogata, et al., “Mechanical properties of sandy sediment containing marine gas hydrates in deep sea offshore Japan,” in Proceedings of the Seventh ISOPE Ocean Mining Symposium, Lisbon, Portugal, 2007, Ed. by J. S. Chung and T. Komai (Lisbon, 2007), pp. 53–56.

  22. Y. H. Shi, X. H. Zhang, X. B. Lu, et al., “Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the south China sea,” Lixue. Xuebao. 47, 521–528 (2015). https://doi.org/10.6052/0459-1879-14-424

    Article  Google Scholar 

  23. H. W. Zhang, Y. F. Cheng, M. L. Li, et al., “Tests on rock mechanics and establishment of strength criterion for gas hydrate reservoirs in the northern shallow sediments of South China Sea,” China Offshore Oil Gas 29, 115–121 (2017). https://doi.org/10.11935/j.issn.1673-1506.2017.06.015

    Article  Google Scholar 

  24. M. L. Li, Study on Physical and Mechanical Characteristics of Multi-Type Natural Gas Hydrate- Bearing Sediments in the South China Sea (China University of Petroleum, Qingdao, 2016).

    Google Scholar 

  25. X. J. Sun, Y. F. Cheng, and L. D. Li, “Triaxial compression test on synthetic core sample with simulated hydrate bearing sediments,” Petrol. Dill. Tech. 40, 52–47 (2012). https://doi.org/10.3969/j.issn.1001-0890.2012.04.011

    Article  Google Scholar 

  26. J. H. Choi, S. Dai, J. S. Lin, et al., “Multistage triaxial tests on laboratory-formed methane hydrate-bearing sediments,” J. Geophys. Res. Sol. Earth 123, 3347–3357 (2018). https://doi.org/10.1029/2018JB015525

    Article  ADS  Google Scholar 

  27. J. Lemaitre, “How to use damage mechanics,” Nucl. Eng. Des. 80, 233–245 (1984). https://doi.org/10.1016/0029-5493(84)90169-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhou, B., Zhang, C. et al. A Statistical Damage Constitutive Model of Hydrate-Bearing Sediments Based on DEM Tests with Flexible Membrane Boundaries. Mech. Solids 58, 1667–1689 (2023). https://doi.org/10.3103/S0025654423600605

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600605

Keywords:

Navigation