Skip to main content
Log in

On Combined Influence of Substrate Curvature and Compliance on Parameters of Coating Delamination from a Cylindrical Base

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Simultaneous influence of substrate curvature and compliance on delamination of coatings is investigated by modeling of the delaminated part of the coating with a slightly curved cylindrical plate with boundary conditions of the type of elastic clamping. Elongated delaminations located along both axial and circumferential directions are considered for both inner and outer surfaces of a cylinder. Propagation of the above types of delaminations due to their elongation and widening is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. J. W. Obreimoff, “Splitting strength of mica,” Proc. Roy. Soc. Lond. 127, 290-297 (1930).

    ADS  Google Scholar 

  2. A. C. Garg, “Delamination–A damage mode in composite structures,” Eng. Fract. Mech. 29 (5), 557–584 (1988).

    Article  Google Scholar 

  3. T. E. Tay, “Characterization and analysis of delamination fracture in composites: An overview of developments from 1990 to 2001,” Appl. Mech. Rev. 56 (1), 1–31 (2003).

    Article  ADS  Google Scholar 

  4. H. Dannenberg, “Measurement of Adhesion by a blister method,” J. Appl. Pol. Sci. 5 (14), 125–134 (1961).

    Article  Google Scholar 

  5. M. L. Williams, “The continuum interpretation for fracture and adhesion,” J. Appl. Pol. Sci. 13, 29–40 (1969).

    Article  Google Scholar 

  6. B. Storakers and B. Anderson, “Nonlinear plate theory applied to delamination in composites,” J. Mech. Phys. Solids 36, 689–718 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Adv. Appl. Mech. 29, 63–191 (1991). https://doi.org/10.1016/S0065-2156(08)70164-9

    Article  Google Scholar 

  8. B. Cotterell and Z. Chen, “Buckling and cracking of thin film on compliant substrates under compression,” Int. J. Fract. 104 (2), 169–179 (2000).

    Article  Google Scholar 

  9. H.-H. Yu and J. W. Hutchinson, “Influence of substrate compliance on buckling delamination of thin films,” Int. J. Fract. 113, 39–55 (2002).

    Article  Google Scholar 

  10. J. W. Hutchinson, “Delamination of compressed films on curved substrates,” J. Mech. Phys. Solids. 49, 1847–1864 (2001).

    Article  ADS  MATH  Google Scholar 

  11. S. Li, J. Z. Wang, and M. D. Thouless, “The effects of shear on delamination in layered materials,” J. Mech. Phys. Solid 52 (1), 193–214 (2004).

    Article  ADS  MATH  Google Scholar 

  12. P. Qiao and J. Wang, “Mechanics and fracture of crack tip deformable bi-material interface,” Int. J. Solids Struct. 41, 7423–7444 (2004).

    Article  MATH  Google Scholar 

  13. G. Parry, J. Colin, C. Coupeau, et al., “Effect of substrate compliance on the global unilateral post-buckling of coatings: AFM observation and finite element calculations,” Acta Mat. 53, 441–447 (2005).

    Article  ADS  Google Scholar 

  14. S. Faulhaber, C. Mercer, M.-Y. Moon. et al., “Buckling delamination in compressed multilayers on curved substrates with accompanying ridge cracks,” J. Mech. Phys. Solids 54, 1004–1028 (2006).

    Article  ADS  MATH  Google Scholar 

  15. L. Brandinelli and R. Massabò, “Mode II weight functions for isotropic and orthotropic double cantilever beams,” Int. J. Fract. 139 (1), 1–25 (2006). https://doi.org/10.1007/s10704-006-6358-0

    Article  MATH  Google Scholar 

  16. M. Andrews and R. Massabo, “The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers,” Eng. Fract. Mech. 74 (17), 2700–2720 (2007).

    Article  Google Scholar 

  17. R. V. Goldstein, K. B. Ustinov, and A. V. Chentsov, “Influence of substrate compliance on stresses generating stability loss of a delaminated coating,” Comput. Contin. Mech. 4 (3), 48–57 (2011).

    Article  Google Scholar 

  18. K. B. Ustinov, “On influence of substrate compliance on delamination and buckling of coatings,” Eng. Fail. Anal. 47 (14), 338–344 (2015). https://doi.org/10.1016/j.engfailanal.2013.09.022

    Article  Google Scholar 

  19. M. R. Begley and J. W. Hutchinson, The Mechanics and Reliability of Films, Multilayers and Coatings (Cambridge Univ. Press, Cambridge, 2017).

    Book  Google Scholar 

  20. L. Barbieri, R. Massabò, and C. Berggreen, “The effects of shear and near tip deformations on interface fracture of symmetric sandwich beams,” Eng. Fract. Mech. 201, 298–321 (2018).

    Article  Google Scholar 

  21. M. D. Thouless, “Shear forces, root rotations, phase angles and delamination of layered materials,” Eng. Fract. Mech. 191, 153–167 (2018).

    Article  Google Scholar 

  22. S. N. White, C. C. Green, and R. M. McMeeking, “A simple 3-point flexural method for measuring fracture toughness of the dental porcelain to zirconia bond and other brittle bimaterial interfaces,” J. Prosthodontic Res. 64 (4), 391–396 (2020). https://doi.org/10.1016/j.jpor.2019.11.002

    Article  Google Scholar 

  23. I. Monetto and R. Massabò, “An analytical solution for the inverted four-point bending test in orthotropic specimens,” Eng. Fract. Mech. 245, 107521 (2021). https://doi.org/10.1016/j.engfracmech.2020.107521

  24. I. Monetto, L. Barbieri, C. Berggreen, and R. Massabò, “Fracture mechanics solutions and operative formulae for isotropic bi-material layers with large elastic mismatch,” Theor. Appl. Fract. Mech. 121, 103451 (2022). https://doi.org/10.1016/j.tafmec.2022.103451

  25. F. Berto, V. V. Glagolev, L. V. Glagolev, and A. A. Markin, “About the influence of the elastoplastic properties of the adhesive on the value of the J-integral in the DCB sample,” Int. J. Fract. 232, 43–54 (2021). https://doi.org/10.1007/s10704-021-00590-3

    Article  Google Scholar 

  26. V. V. Glagolev and A. A. Markin, “Influence of the model of the behavior of a thin adhesion layer on the value of the J-integral,” Mech. Solids 57 (2), 278–285 (2022). https://doi.org/10.3103/S0025654422020169

    Article  ADS  MATH  Google Scholar 

  27. V. V. Glagolev and A. A. Markin, “Model of shear elastic-plastic deformation of a thin adhesive layer,” Mech. Solids. 55, 837–843 (2020). https://doi.org/10.3103/S0025654420060072

    Article  ADS  Google Scholar 

  28. A. O. Vatulyan and K. L. Morozov, “Investigation of delamination from an elastic base using a model with two coefficients of subgrade reaction,” Mech. Solids. 55, 207–217 (2020). https://doi.org/10.3103/S002565442002017X

    Article  ADS  Google Scholar 

  29. L. M. Kachanov, Delamination Buckling of Composite Materials (Kluwer Academic Publ., Dordrecht, 1988).

    Book  MATH  Google Scholar 

  30. K. B. Ustinov, “On separation of a layer from the half-plane: elastic fixation conditions for a plate equivalent to the layer,” Mech. Solids 50 (1), 62–80 (2015). https://doi.org/10.3103/S0025654415010070

    Article  ADS  Google Scholar 

  31. K. B. Ustinov, “On semi-infinite interface crack in bi-material elastic layer,” Eur. J. Mech. A. Solids 75, 56–69 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. K. B. Ustinov and R. Massabo. “On elastic clamping boundary conditions in plate models describing detaching bilayers,” Int. J. Solids Struct. 248, 11–16 (2022). https://doi.org/10.1016/j.ijsolstr.2022.111600

    Article  Google Scholar 

  33. K. B. Ustinov and E. A. Kasparova, “Evaluation of the influence of curvature and compliance of the base on the parameters of delamination of the coating,” Def. Des. Mat., Sci. Technol., No. 3, 28–35 (2015).

  34. V. Z. Vlasov and N. N. Leontiev, Beams, Slabs and Shells on an Elastic Foundation (Fizmatlit, Moscow, 1960) [in Russian].

    Google Scholar 

  35. J. L. Sanders, “Nonlinear theories for thin shells,” Quart. Appl. Math. XXI (1), 21–36 (1963).

    Article  MathSciNet  Google Scholar 

  36. Ya. M. Grigorenko and A. P. Mukoyed, Solving Nonlinear Problems of Shell theory on a computer (Vyshchaya Shkola, Kiev, 1983) [in Russian].

    Google Scholar 

  37. V. Z. Vlasov, Selected Works. General Theory of Shells, Vol. I (Akad. Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  38. R. L. Salganik and K. B. Ustinov, “Deformation problem for an elastically fixed plate modeling a coating partially delaminated from the substrate (plane strain),” Mech. Solids 47 (4), 415–425 (2012). https://doi.org/10.3103/S0025654412040061

    Article  ADS  Google Scholar 

  39. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Publ., Leiden, 1982).

    Book  Google Scholar 

  40. B. M. Malyshev and R. L. Salganik, “The strength of adhesive joints using the theory of crack,” Int. J. Fract. Mech. 1 (2), 114–128 (1965).

    Article  Google Scholar 

  41. J. Dundurs, “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading,” J. Appl. Mech. Trans. ASME. 36 (3), 650–651 (1964).

    Article  Google Scholar 

Download references

Funding

The work has been done under financial support of Russian State Assignment under contract no. АААА-А20-123021700046-4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. B. Ustinov or D. V. Gandilyan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinov, K.B., Gandilyan, D.V. On Combined Influence of Substrate Curvature and Compliance on Parameters of Coating Delamination from a Cylindrical Base. Mech. Solids 58, 622–640 (2023). https://doi.org/10.3103/S0025654423600174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600174

Keywords:

Navigation