Skip to main content
Log in

Effect of Localized Defect Positioning on Buckling of Axisymmetric Cylindrical Shells under Axial Compression

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Thin cylindrical shell structures are used in many fields such as structural elements in many branches of engineering: cooling towers, nuclear reactors, silos and steel tanks, etc. They are often subject to a large number of imperfections, due to their manufacturing difficulties. On most of these structures, the defects do not always appear in the same place. Thus, it is necessary to quantify the simultaneous influence of this factor on the critical load. In this work we propose to analyze the effect of different positions of these localized axisymmetric initial imperfections on the critical load of elastic cylindrical shells subjected to axial compression. Numerical analysis is used to evaluate the buckling resistance. According to the results of the parametric study of the perfect shell, the choice of the modeling method, the type and the number of elements necessary to be used in the numerical analysis have a significant impact on the quality of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. Da Silva, PhD Thesis (INSA de Lyon, 2011) [in French].

  2. Z. Lorenz, “Achsensymmetrische Verzerrungen in dünnwandigen Hohlzylindern,” Z. Vereines Deutsch. Ing. 52 (43), 1706–1713 (1908).

    Google Scholar 

  3. S. P. Timoshenko, “Einige Stabilitätsprobleme der Elasticitätstheorie,” Z. Math. Phys. 58, 378–385 (1910).

    Google Scholar 

  4. R.V. Southwell, “On the general theory of elastic stability,” Phil. Trans. Roy. Soc. Lond. 213, 187–202 (1914). https://doi.org/10.1098/rsta.1914.0005

    Article  ADS  MATH  Google Scholar 

  5. A. Robertson, “The strength of tubular struts,” Proc. Roy. Soc. Lon. Ser. A 121 (788), 558–585 (1928). https://doi.org/10.1098/RSPA.1928.0219

    Article  ADS  Google Scholar 

  6. W. Flugge, “Die Stabilität der Kreiszylinderschale,” Ing. Arch. 3, 463–506 (1932). https://doi.org/10.1007/BF02079822

    Article  MATH  Google Scholar 

  7. E. E. Lundquist, “Strength tests of thin-walled duralumin cylinders in compression. Report No. 473,” in NACA Technical Reports (Center for AeroSpace Information, 1933), pp. 585–602.

  8. W. M. Wilson and N. M. Newmark, “The strength of thin cylindrical shells as columns,” in University of Illinois Engineering Experiment Station, Bulletin No. 255 (Urbana, IL, 1933), pp. 5–45.

  9. J. G. Teng, “Buckling of thin shells: Recent advances and trends,” Am. Soc. Mech. Eng. 49, 263 (1996). https://doi.org/10.1115/1.3101927

    Article  Google Scholar 

  10. L. H. Donnell, “A new theory for the buckling of thin cylinders under axial compression and bending,” ASME 56, 795 (1934).

  11. J. M. F. G. Holst, J. M. Rotter, and C. R. Calladine, “Imperfections and buckling in cylindrical shells with consistent residual stresses,” J. Construct. Steel Res. 54 (2), 265–282 (2000). https://doi.org/10.1016/S0143-974X(99)00047-4

    Article  Google Scholar 

  12. L. H. Donnell and C. C. Wan, “Effect of imperfections on buckling of thin cylinders and columns under axial compression,” J. Appl Mech. 17 (1), 73–83 (1950). https://doi.org/10.1115/1.4010060

    Article  MATH  Google Scholar 

  13. W. T. Koiter, “The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression,” Proc. Roy. Neth. Acad. Sci. 66 (5), 265–279 (1963).

    MATH  Google Scholar 

  14. J. W. Hutchinson, R. C. Tennyson, and D. B. Muggeridge, “Effect of a local axisymmetric imperfection on the buckling behavior of a circular cylindrical shell under axial compression,” AIAA J. 9 (1), 48–53 (1971). https://doi.org/10.2514/3.6123

    Article  ADS  Google Scholar 

  15. J. C. Amazigo and B. Budiansky, “Asymptotic formulas for buckling stresses of axially compressed cylinders with localized or random axisymetric imperfections,” J. Appl. Mech. 39, 179–184 (1972). https://doi.org/10.1115/1.3422608

    Article  ADS  MATH  Google Scholar 

  16. J. Arbocz and C. D. Babcock, “The effect of general imperfections on the buckling of cylindrical shells,” J. Appl. Mech. 36, 28–38 (1969). https://doi.org/10.1115/1.3564582

    Article  ADS  MATH  Google Scholar 

  17. N. Yamaki, Elastic Stability of Circular Cylindrical Shells (North-Holland, Amsterdam, 1984).

    MATH  Google Scholar 

  18. J. M. Rotter and J. G. Teng, “Elastic stability of cylindrical shells with weld depressions,” J. Struct. Eng. ASCE 115 (5), 1244–1263 (1989). https://doi.org/10.1061/(ASCE)0733-9445(1989)115:5(1244)

    Article  Google Scholar 

  19. J. G. Teng and J. M. Rotter, “Buckling of pressurized axisymmetrically imperfect cylinders under axial loads,” J. Eng. Mech. ASCE 118 (2), 229–247 (1992). https://doi.org/10.1061/(ASCE)0733-9399(1992)118:2(229)

    Article  Google Scholar 

  20. M. Jamal, L. Lahlou, M. Midani, et al., “A semi-analytical buckling analysis of imperfect cylindrical shells under axial compression,” Int. J. Solids Struct. 40 (5), 1311–1327 (2003). https://doi.org/10.1016/S0020-7683(02)00583-8

    Article  MATH  Google Scholar 

  21. J. Saemi, M. Sedighi, and M. Shariati, “Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells,” Mech. Solids 50, 529–545 (2015). https://doi.org/10.3103/S0025654415050052

    Article  ADS  Google Scholar 

  22. S. A. Lukankin and V. N. Paimushin, “Static and dynamic buckling modes of a cylindrical shell under external pressure,” Mech. Solids 49, 83–98 (2014). https://doi.org/10.3103/S0025654414010105

    Article  ADS  Google Scholar 

  23. M. Pircher and R. Bridge, “The influence of circumferential weld-induced imperfections on the buckling of silos and tanks,” J. Construct. Steel Res. 57 (5), 569–580 (2001). https://doi.org/10.1016/S0143-974X(00)00027-4

    Article  Google Scholar 

  24. S. E. Kim and C. S. Kim, “Buckling strength of the cylindrical shell and tank subjected to axially compressive loads,” Thin-Wall. Struct. 40 (4), 329–353 (2002). https://doi.org/10.1016/S0263-8231(01)00066-0

    Article  Google Scholar 

  25. W.T. Koiter, Ph. D. Thesis (Delft University of Technology, Delft, 1945).

  26. A. Khamlichi, M. Bezzazi, and A. Limam, “Buckling of elastic cylindrical shells considering the effect of localized axisymmetric imperfections,” Thin-Wall. Struct. 42 (7), 1035–1047 (2004). https://doi.org/10.1016/j.tws.2004.03.008

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to all technician structure staff at Eloued University and Biskra University for helping during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Labiodh.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labiodh, B., Chalane, M. Effect of Localized Defect Positioning on Buckling of Axisymmetric Cylindrical Shells under Axial Compression. Mech. Solids 58, 880–889 (2023). https://doi.org/10.3103/S0025654423600046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600046

Keywords:

Navigation