Skip to main content
Log in

Digital Production Tool—a Package for Robust Engineering Analysis as a Tool for Transferring Fundamental Scientific Results to Industry on the Example of the Fidesys Package and the Theory of Multiple Superimposition of Large Deformations

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

It is noted that intellectual operations are significantly automated in the design of new materials (especially metamaterials, smart materials, composites), new products, structures, technological operations (including additive manufacturing), and therefore the role of specialists in the field of mechanics of solids (MoS) has changed significantly. It became possible to fully automate the process of solving differential equations that describe the formulation of the problem, including related ones. This is done using the Engineering Analysis Package (CAE) or combinations thereof. The calculator, designer, researcher sets the design (its CAD model) and external forces (boundary conditions in terms of MoS), description of materials (constitutive relations in terms of MoS), and the calculation is automatically performed.

It is noted that, in particular, the formulation of mechanical and mathematical formulations for new types of problems (preloading, interdisciplinary problems) remains in demand; construction of constitutive relations (material models) for new materials (composites, metamaterials, smart materials) and models using additional relations for their subsequent implementation in the CAE. It is also in demand to find exact solutions for the validation of the CAE.

On the example of the theory of multiple superimposition of large deformations and the implementation of this theory and its accompanying results in the industrial full-featured Fidesys package, the possibility of implementing the results of MoS for industry is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.

Similar content being viewed by others

REFERENCES

  1. A. B. Kaplun, E. M. Morozov, and M. A. Olferieva, Ansys in the Hands of Engineers (Editorial URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  2. E. M. Morozov, V. A. Levin, and A. V. Vershinin, Strength Analysis: FIDESYS in the Hands of Engineers (URSS, Moscow, 2015) [in Russian].

    Google Scholar 

  3. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1: The Basis (Butterworth–Heinemann, London, 2000).

  4. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 2: Solid Mechanics (Butterworth–Heinemann, London, 2000).

  5. O. C. Zienkiewicz, R. L. Taylor, S. J. Sherwin, and J. Peiro´, “On discontinuous Galerkin methods,” Int. J. Numer. Meth. Eng. 58 (8), 1119–1148 (2003). https://doi.org/10.1002/nme.884

    Article  MathSciNet  MATH  Google Scholar 

  6. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics (Elsevier, Amsterdam, 2005).

    MATH  Google Scholar 

  7. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: its Basis and Fundamentals (Elsevier, Amsterdam, 2005).

    MATH  Google Scholar 

  8. V. A. Levin and A. V. Vershinin, Nonlinear Computational Mechanics of Strength, Vol. 2: Numerical Methods. Implementation on High-Speed Computational Systems (Fizmatlit, Moscow, 2015) [in Russian].

  9. D. M. Klimov and V. A. Rudenko, Methods of Computer Algebra in Problems of Mechanics (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  10. V. A. Levin, “Using the method of successive approximations in problems of superposition of finite deformations,” Sov. Appl. Mech. 23, 472–476 (1987). https://doi.org/10.1007/BF00888060

    Article  ADS  MATH  Google Scholar 

  11. V. A. Levin, K. M. Zingerman, and E. P. Sanchenko, On the Use of Numerical and Analytical Calculations on a Computer to Assess the Effects of the Third Order in the Problem of the Formation of Holes in an Elastic Body with Initial Deformations, Availble from VINITI, No. 7993–B87 (TPI, 1987).

  12. V. A. Levin and K. M. Zingerman, “On one possibility of using methods of analytical calculations on computers in application to the problems of the theory of imposition of finite deformations,” in Mechanics of Elastomers (KPI, Krasnodar, 1987), pp. 28–35.

    Google Scholar 

  13. V. A. Levin and K. M. Vershinin, Nonlinear Computational Mechanics of Strength, Vol. 3: Exact and Approximate Analytical Solutions for Finite Deformations and Their Imposition (Fizmatlit, Moscow, 2016) [in Russian].

  14. V. A. Levin, L.M. Zubov, and K. M. Zingerman, “Influence of the prestressed layer on the nonlinear flexure of a rectangular beam made of compressible material,” Dokl. Phys. 60, 167–170 (2015). https://doi.org/10.1134/S1028335815040023

    Article  ADS  Google Scholar 

  15. V. A. Levin, L.M. Zubov, and K. M. Zingerman, “Multiple joined prestressed orthotropic layers under large strains,” Int. J. Eng Sci. 133, 47-59 (2018). https://doi.org/10.1016/j.ijengsci.2018.08.008

    Article  MathSciNet  MATH  Google Scholar 

  16. R. S. Rivlin, “A note on the torsion of an incompressible, highly-elastic cylinder,” Proc. Cambrige Phys. Soc. 45 (3), 485–487 (1949). https://doi.org/10.1017/S0305004100025135

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. R. S. Rivlin, “Large elastic deformations of isotropic materials. IV. Further developments of the general theory,” Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Sci. 241 (835), 379–397 (1948). https://doi.org/10.1098/rsta.1948.0024

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. S. Rivlin, “Large elastic deformations of isotropic materials. V. The problem of flexture,” Proc. Royal Soc. Ser A. Math Phys Sci. 195 (1043), 463–473 (1949). https://doi.org/10.1098/rspa.1949.0004

    Article  Google Scholar 

  19. R. S. Rivlin, “Large elastic deformations of isotropic materials. VI. Further results in the theory torsion, shear and flexture,” Philos. Trans. Royal Soc. Ser A. Math. Phys. Sci. 242 (845), 173–195 (1949). https://doi.org/10.1098/rsta.1949.0009

    Article  ADS  MATH  Google Scholar 

  20. J. L. Ericksen, “Deformations possible in every isotropic, incompressible, perfectly elastic body,” ZAMP 5, 466–489 (1954). https://doi.org/10.1007/BF01601214

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. E. Green and R. T. Shield, “Finite extension and torsion of cylinders,” Philos. Trans. Royal Soc. Ser A. Math. Phys. Sci. 224 (846), 47–86 (1951). https://doi.org/10.1098/rsta.1951.0015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. V. A. Levin, Y. Y. Podladchikov, and K. M. Zingerman, “An exact solution to the Lame problem for a hollow sphere for new types of nonlinear elastic materials in the case of large deformations,” Eur. J. Mech. A/Solids 90, 104345 (2021). https://doi.org/10.1016/j.euromechsol.2021.104345

  23. V. A. Levin, L. M. Zubov, and K. M. Zingerman, “An exact solution to the problem of biaxial loading of a micropolar elastic plate made by joining two prestrained arc-shaped layers under large strains,” Eur. J. Mech. A/Solids. 88, 104237 (2021). https://doi.org/10.1016/j.euromechsol.2021.104237

  24. V. A. Levin, Nonlinear Computational Mechanics of Strength, Vol. 1: Models and Methods. Formation and Development of Defects (Fizmatlit, Moscow, 2015) [in Russian].

  25. V. A. Levin, Repeated Superposition of Large Deformations in Elastic and Viscoelastic Solids (Nauka, Moscow, 1999) [in Russian].

    Google Scholar 

  26. V. A. Levin, “Stress concentration near a hole, which is circular at the time of formation, in a body made of a viscoelastic materials,” Dokl. Akad. Nauk SSSR 299 (5), 1079–1082 (1988).

    Google Scholar 

  27. S. Tripathy, C. Chin, T. London, et al., “Process modeling and validation of powder bed metal additive manufacturing,” in Proc. of NAFEMS World Congress NWC-2017, Stockholm, 2017 (NAFEMS, 2017). https://www.researchgate.net/publication/319173249

  28. S. M. Abramov, S. A. Amel’kin, L. V. Kljuev, et al., “Modeling the development of large plastic deformations in a rotating disk in the fidesys program,” Chebyshev. Sborn. 18 (3), 15–27 (2017). https://doi.org/10.22405/2226-8383-2017-18-3-15-27

    Article  MATH  Google Scholar 

  29. M. Y. Yakovlev, P. Tanasevich, A. V. Vershinin, and V. A. Levin, “Numerical analysis of effective thermophysical properties and stability of metamaterials with a negative coefficient of thermal expansion using CAE Fidesys,” in Abstracts of the International Conference “Physical Mesomechanics. Materials with a Multi-Level Hierarchically Organized Structure and Intelligent Production Technologies,” (TGU, Tomsk, 2021), pp. 340–341. https://doi.org/10.17223/978-5-907442-03-0-2021-212

  30. M. Y. Yakovlev, P. Tanasevich, A. V. Vershinin, et al., “Application of the finite element method to modeling the effective mechanical and thermomechanical properties of metamaterials of the 3D lattice structure,” in Proc. of NAFEMS World Congress, 2021 (NAFEMS, 2021), pp. 403.

  31. E. Barchiesi, F. dell’Isola, and F. Hild, “On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation,” Int. J. Solids Struct. 208–209, 49–62 (2021). https://doi.org/10.1016/j.ijsolstr.2020.09.036

    Article  Google Scholar 

  32. F. dell’Isola, A. Della Corte, I. Giorgio, and D. Scerrato, “Pantographic 2D sheets: Discussion of some numerical investigations and potential applications,” Int. J. Non-Lin. Mech. 80, 200–208 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.10.010

    Article  Google Scholar 

  33. S. N. Shubin, A. B. Freidin, and A. G. Akulichev, “Elastomer composites based on filler with negative thermal expansion coefficient in sealing application,” Arch. Appl. Mech. 86, 351–360 (2016). https://doi.org/10.1007/s00419-016-1120-1

    Article  ADS  Google Scholar 

  34. X.-L. Peng and S. Bargmann, “Tunable auxeticity and isotropic negative thermal expansion in three-dimensional lattice structures of cubic symmetry,” Extreme Mech. Lett. 43, 101201 (2021). https://doi.org/10.1016/j.eml.2021.101201

  35. Q. Wang, J. A. Jackson, Q. Ge, et al., “Lightweight mechanical metamaterials with tunable negative thermal expansion,” Phys. Rev. Lett. 116, 175901 92016). https://doi.org/10.1103/PhysRevLett.117.175901

  36. T. Bückmann, N. Stenger, M. Kadic, et al., “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24 (20), 2710–2714 (2012). https://doi.org/10.1002/adma.201200584

    Article  Google Scholar 

  37. S. E. Lapin and V. B. Pisetskiy, “Information to develop geoinformation safety panel of underground mining works based on related solutions in prognosis of the development of stressed state of the massif of mountain rocks and gas flows,” Chebyshev. Sborn. 18 (3), 350–362. (2017). https://doi.org/10.22405/2226-8383-2017-18-3-350-362

    Article  Google Scholar 

  38. A. Myasnikov, A. Vershinin, and A. Sboychakov, “A generalization of geomechanical model for naturally fractured reservoirs,” in SPE Russian Petroleum Technology Conference and Exhibition, Moscow, Russia, October 2016 (SPE, 2016), SPE-182033-MS. https://doi.org/10.2118/182033-MS

  39. A. Gupta, G. Penuela, and R. Avila, “An integrated approach to the determination of permeability tensors for naturally fractured reservoirs,” J. Can. Pet. Technol. 40 (12), PETSOC-01-12-02 (2001). https://doi.org/10.2118/01-12-02

  40. A. Costa, “Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption,” Geophys. Res. Lett. 33 (2), L02318 (2006). https://doi.org/10.1029/2005GL025134

  41. M. Bagheri and A. Settari, “Modeling of geomechanics in naturally fractured reservoirs,” in SPE Reservoir Simulation Symposium. Houston, 2005 (SPE, 2005), pp. SPE–93083–MS. https://doi.org/10.2118/93083-MS

  42. M. Bagheri and A. Settari, “Effects of fractures on reservoir deformation and flow modeling,” Can. Geotech. J. 43 (6), 574–586 (2006). https://doi.org/10.1139/T06-024

    Article  Google Scholar 

  43. V. B. Pisetskiy, V. V. Vlasov, V. P. Cherepanov, et al., “Prediction of rock massif stability on the basis of the seismic location method during construction of underground structures,” Inzh. Izysk., No. 9–10, 46–51 (2014).

  44. Yu. V. Shuvalov, G. I. Korshunov, A. V. Montikov, et al., “Geomechanical and gas-dynamic processes in a coal-bearing massif at high speeds of moving faces,” Gorniy Inf.-Analit. Bull. No. 6, 80–88 (2011).

  45. A. B. Zhuravlev, V. I. Karev, Yu. F. Kovalenko, and K. B. Ustinov, “The effect of seepage on the stress–strain state of rock near a borehole,” J. Appl. Math. Mech. 78 (1), 56–64 (2014). https://doi.org/10.1016/j.jappmathmech.2014.05.007

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Souley and A. Thoraval, “Nonlinear mechanical and poromechanical analyses: comparison with analytical solutions,” in Proc. COMSOL Conference, 2011, Stuttgart, Germany (COMSOL, 2011), pp. NC.ffineris00973639.

  47. M. M. Carroll and O. Horgan, “Finite strain solutions for compressible elastic solid,” Quart. Appl. Math. 48 (3), 767–780 (1990). https://doi.org/10.1090/qam/1079919

    Article  MathSciNet  MATH  Google Scholar 

  48. J. M. Ball, “Discontinuous equilibrium solutions and cavitation in nonlinear elasticity,” Philos. Trans. Royal Soc. Ser A 306 (1496), 557–611 (1982). https://doi.org/10.1098/rsta.1982.0095

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. L. M. Zubov, “Universal solutions of nonlinear dislocation theory for elastic cylinder,” Mech. Solids 55, 701–709 (2020). https://doi.org/10.3103/S0025654420050167

    Article  ADS  Google Scholar 

  50. L. M. Zubov, “Universal solution of nonlinear elasticity for a hollow cylinder with prestressed coatings,” Acta Mech. 230, 4137–4143 (2019). https://doi.org/10.1007/s00707-018-2333-x

    Article  MathSciNet  MATH  Google Scholar 

  51. V. A. Eremeev and L. M. Zubov, Mechanics of Elastic Shells (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  52. R. Batra, F. dell’Isola, and G. Ruta, “Second-order solution of Saint-Venant’s problem for an elastic bar predeformed in flexure,” Int. J. Non-Lin. Mech. 40 (2-03), 411–422 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.08.002

  53. M. Sharma and H. Wang, “A Fully 3-D, multi-phase, poro-elasto-plastic model for sand production,” in SPE Annual Technical Conference and Exhibition, Dubai, UAE, September 2016 (SPE, 2016), SPE–181566–MS. https://doi.org/10.2118/181566-MS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Levin.

Additional information

Translated by M.K.Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.A. Digital Production Tool—a Package for Robust Engineering Analysis as a Tool for Transferring Fundamental Scientific Results to Industry on the Example of the Fidesys Package and the Theory of Multiple Superimposition of Large Deformations. Mech. Solids 58, 455–474 (2023). https://doi.org/10.3103/S002565442260115X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565442260115X

Keywords:

Navigation