Skip to main content
Log in

Propagation of a Flat Shock Front in an Elastic Layer

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The problem of a wave front in an anisotropic elastic layer is studied. It is shown that in the case of elastic isotropy, a uniform wave with a plane front in the layer is possible only in one particular case, at zero Poisson’s ratio. In other cases, for the existence of a wave with a flat front, the wave must be inhomogeneous with respect to the transversal coordinate. An analytical solution providing the existence of a plane shock wave front has been obtained for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Strutt (Lord Rayleigh), “On wave propagating along the plane surface of an elastic solid,” Proc. Lond. Math. Soc. 17, 4–11 (1885).

    MathSciNet  Google Scholar 

  2. G. W. Farnell, “Properties of elastic surface waves,” Phys. Acoust. 6, 109–166 (1970).

    Article  Google Scholar 

  3. P. Ventura, J. M. Hodre, J. Desbois, and M. Solal, “Combined FEM and Green’s function analysis of periodic SAW structure, application to the calculation of reflection and scattering parameters,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 48,1259–1274 (2001).

    Article  Google Scholar 

  4. J. L. Synge, “Elastic waves in anisotropic media,” J. Math. Phys. 35, 323–334 (1956).

    Article  MathSciNet  Google Scholar 

  5. R. Stoneley, “The propagation of surface elastic waves in a cubic crystal,” Proc. Roy. Soc. A232, 447–458 (1955).

    MathSciNet  MATH  ADS  Google Scholar 

  6. A.N. Stroh, “Steady state problems in anisotropic elasticity,” J. Math. Phys. 41, 77–103 (1962).

    Article  MathSciNet  Google Scholar 

  7. T.C. Lim and G.W. Farnell, “Search for forbidden directions of elastic surface-wave propagation in anisotropic crystals,” J. Appl. Phys. 39, 4319–4325 (1968).

    Article  ADS  Google Scholar 

  8. T.C. Lim and G.W. Farnell, “Character of pseudo surface waves on anisotropic crystals,” J. Acoust. Soc. Am. 45, 845–851 (1969).

    Article  ADS  Google Scholar 

  9. G.W. Farnell, “Properties of elastic surface waves,” Phys. Acoust. 6, 109–166 (1970).

    Article  Google Scholar 

  10. P. Bauerschmidt, R. Lerch, J. Machui, et al., “Reflection and transmission coefficients of SAW in a periodic grating computed by finite element analysis,” in IEEE Symposium on Ultrasonics, 1990 (IEEE, 1990), Vol. 1, pp. 421–423. https://doi.org/10.1109/ULTSYM.1990.171400

  11. R. M. Davies, “A critical study of the Hopkinson pressure bar,” Phil. Trans. R. Soc. A240, 375–457 (1948).

    MATH  ADS  Google Scholar 

  12. R. D. Mindlin and G. Hermann, “A one-dimensional theory of compressive waves in an elastic rod,” in Proc. First U.S. National Congress Appl. Mech., Chicago, 1951 (ASME, New York, 1952), pp. 187–191.

  13. N. A. Haskell, “Dispersion of surface waves on multilayered media,” Bull. Seismol. Soc. Am. 43 (1), 17–34 (1953).

    Article  Google Scholar 

  14. L. Knopoff, “A matrix method for elastic wave problems,” Bull. Seismol. Soc. America. 54 (1), 431–438 (1964).

    Article  ADS  Google Scholar 

  15. K. F. Graff, Wave Motion in Elastic Solids (Dover Publ., New York, 1975).

    MATH  Google Scholar 

  16. T. C. T. Ting, Anisotropic Elasticity: Theory and Applications (Oxford Univ. Press, New York, 1996).

    Book  Google Scholar 

  17. A. V. Kravtsov, et al., “Finite element models in Lamb’s problem,” Mech. Solids. 46, 952–959 (2011). https://doi.org/10.3103/S002565441106015X

    Article  ADS  Google Scholar 

  18. D. Fortunato, N. Hale, and A. Townsend, “The ultraspherical spectral element method,” J. Comput. Phys. 436, 110087 (2021). https://doi.org/10.1016/j.jcp.2020.110087

  19. S. A. Orszag, “Spectral methods for problems in complex geometries,” J. Comput. Phys. 37, 70–92 (1980). https://doi.org/10.1016/0021-9991(80)90005-4

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. P. Martinsson, “A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method,” J. Comput. Phys. 242, 460–479 (2013). https://doi.org/10.1016/j.jcp.2013.02.019

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. T. Babb, A. Gillman, S. Hao, and P.-G. Martinsson, “An accelerated Poisson solver based on multidomain spectral discretization,” BIT Numer. Math. 58, 851–879 (2018). https://doi.org/10.1007/s10543-018-0714-0

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Chua and P. L. Stoffab, “Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media,” J. Appl. Geophys. 76, 44–49 (2012).

    Article  ADS  Google Scholar 

  23. J. Falk, E. Tessmer, and D. Gajewski, “Efficient finite-difference modelling of seismic waves using locally adjustable time steps,” Geophys. Prosp. 46, 603–616 (1998).

    Article  ADS  Google Scholar 

  24. P. Moczo, J. Kristek, M. Galis, and P. Pazak, “On accuracy of the finite-difference and finite-element schemes with respect to p-wave to s-wave speed ratio,” Geophys. J. Int. 182, 493–510 (2010).

    ADS  Google Scholar 

  25. A. J. M. Antunes, R. C. P. Leal-Toledo, O. T. da Silveira Filho, and E. M. Toledo, “Finite difference method for solving acoustic wave equation using locally adjustable time-steps,” Proc. Comp. Sci. 29, 627–636 (2014). https://doi.org/10.1016/j.procs.2014.05.056

    Article  Google Scholar 

  26. S. A. M. Oliveira, “A fourth-order finite-difference method for the acoustic wave equation on irregular grids,” Geophys. 68 (2), 672–676 (2003).

    Article  Google Scholar 

  27. T. W. Wu, Boundary Element Acoustics: Fundamentals and Computer Codes. Advances in Boundary Elements (Witpress, Southampton, Boston, 2000).

    Google Scholar 

  28. J. J. R. Silva, Acoustic and Elastic Wave Scattering using Boundary Elements (Computational Mechanics Publications, Southampton, 1994).

    MATH  Google Scholar 

  29. X. Wang, H. Chen, and J. Zhang, “An efficient boundary integral equation method for multi-frequency acoustics analysis,” Eng. Anal. Boundary Elem. 61, 282–286 (2015). https://doi.org/10.1016/j.enganabound.2015.08.006

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. O. Zhang, T. Zhang, H. Ouyang, and T. Y. Li, “SPH simulation of acoustic waves: Effects of frequency, sound pressure, and particle spacing,” Math. Problems Eng. 2015, 348314 (2015). https://doi.org/10.1155/2015/348314

  31. Sh. Wang, Y.O. Zhang, and J. P. Wu, “Lagrangian meshfree finite difference particle method with variable smoothing length for solving wave equations,” Adv. Mech. Eng. 10 (7), 1–12 (2018). https://doi.org/10.1177/1687814018789248

    Article  Google Scholar 

  32. J. Cleckler, S. Elghobashi, and F. Liu, “On the motion of inertial particles by sound waves,” Phys. Fluids. 24 (3), 033301 (2012). https://doi.org/10.1063/1.3696243

  33. V. G. Gogoladze, “Dispersion of Rayleigh waves in a layer,” Publ. Inst. Seism. Acad. Sci. U.R.S.S. 119, 27–38 (1947).

    Google Scholar 

  34. W. T. Thomson, “Transmission of elastic waves through a stratified solid medium,” J. Appl. Phys. 21 (2), 89–93 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  35. S. V. Kuznetsov, “SH-waves in laminated plates,” Quart. Appl. Math. 64 (1), 153–165 (2006). https://doi.org/10.1090/s0033-569x-06-00992-1

    Article  MathSciNet  MATH  Google Scholar 

  36. R. B. Evans, “The decoupling of seismic waves,” Wave Motion. 8 (4), 321–328 (1986).

    Article  Google Scholar 

  37. S. V. Kuznetsov, “Abnormal dispersion of Lamb waves in stratified media,” Z. Angew. Math. Phys. 70, 175 (2019). https://doi.org/10.1007/s00033-019-1222-z

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Ilyashenko, et al., “SH waves in anisotropic (monoclinic) media,” Z. Angew. Math. Phys. 69, 17 (2018). https://doi.org/10.1007/s00033-018-0916-y

    Article  MathSciNet  MATH  Google Scholar 

  39. R. V. Goldstein, “Rayleigh waves and resonance phenomena in elastic bodies,” J. Appl. Math. Mech. 29 (3), 608–619 (1965). https://doi.org/10.1016/0021-8928(65)90066-3

    Article  MATH  Google Scholar 

  40. R. V. Goldstein and S. V. Kuznetsov, “Long-wave asymptotics of Lamb waves,” Mech. Solids. 52, 700–707 (2017). https://doi.org/10.3103/S0025654417060097

    Article  ADS  Google Scholar 

  41. I. Argatov and A. Iantchenko, “Rayleigh surface waves in functionally graded materials – long-wave limit,” Quart. J. Mech. Appl. Math. 72 (2), 197–211 (2019). https://doi.org/10.1093/qjmam/hbz002

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Kaplunov and D. Prikazchikov, “Asymptotic theory for Rayleigh and Rayleigh-type waves,” Adv. Appl. Mech. 50, 1–106 (2017). https://doi.org/10.1016/bs.aams.2017.01.001

    Article  Google Scholar 

  43. R. V. Craster, L. M. Joseph, and J. Kaplunov, “Long-wave asymptotic theories: The connection between functionally graded waveguides and periodic media,” Wave Motion 51 (4), 581–588 (2014). https://doi.org/10.1016/j.wavemoti.2013.09.007

    Article  MathSciNet  MATH  Google Scholar 

  44. P.T. Wootton, J. Kaplunov, and D. Prikazchikov, “A second order asymptotic model for Rayleigh waves on a linearly elastic half plane,” IMA J. Appl. Math. 85 (1), 113–131 (2020). https://doi.org/10.1093/imamat/hxz037

    Article  MathSciNet  MATH  Google Scholar 

  45. I. Djeran-Maigre, et al., “Solitary SH waves in two-layered traction-free plates,” Comptes Rendus. Mec. 336 (1–2), 102–107 (2008). https://doi.org/10.1016/j.crme.2007.11.001

    Article  MATH  ADS  Google Scholar 

  46. T. Karman and P. Duwez, “The propagation of plastic deformation in solids,” J. Appl. Phys. 21, 987–994 (1950). https://doi.org/10.1063/1.1699544

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. J. Knowles, “Impact-induced tensile waves in a rubberlike material,” J. Appl. Math. 62, 1153–1175 (2002). /https://doi.org/10.1137/S0036139901388234

  48. A. Molinari and G. Ravichandran, “Fundamental structure of steady plastic shock waves in metals,” J. Appl. Phys. 95, 1718–1732 (2004). https://doi.org/10.1063/1.1640452

    Article  ADS  Google Scholar 

  49. M. Kuznetsova, M. Khudyakov, and V. Sadovskii, “Wave propagation in continuous bimodular media,” Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1889725

  50. B. Hafskjold, D. Bedeaux, S. Kjelstrup, and Ø. Wilhelmsen, “Theory and simulation of shock waves: Entropy production and energy conversion,” Phys. Rev. Ser. E. 104 (1) (2021). https://doi.org/10.1103/physreve.104.014131

  51. A. V. Ilyashenko, et al., “Pochhammer–Chree waves: polarization of the axially symmetric modes,” Arch. Appl. Mech. 88, 1385–1394 (2018). https://doi.org/10.1007/s00419-018-1377-7

    Article  ADS  Google Scholar 

  52. A. V. Ilyashenko, “Pochhammer-Cree longitudinal waves: anomalous polarization,” Mech. Solids 54, 598–606 (2019). https://doi.org/10.3103/S0025654419040149

    Article  ADS  Google Scholar 

  53. V. V. Mokryakov, “Maxima of the stresses in the longitudinal Pochhammer-Chree waves,” Mech. Solids. 54 (7), 1063–1075 (2019). https://doi.org/10.3103/S0025654419070070

    Article  ADS  Google Scholar 

  54. T. A. Gadzhibekov and A Ilyashenko, “Theoretical aspects of the application of Pochhammer-Chree waves to the problems of determining the dynamic Poisson’s ratio,” Mech. Solids. 56 (5), 702–714 (2021). https://doi.org/10.3103/S0025654421050095

    Article  ADS  Google Scholar 

Download references

Funding

The author thanks the Russian Foundation for Basic Research (grant no. 20-08-00419) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ilyashenko.

Additional information

Translated by M.K. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyashenko, A.V. Propagation of a Flat Shock Front in an Elastic Layer. Mech. Solids 57, 1078–1085 (2022). https://doi.org/10.3103/S002565442205020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565442205020X

Keywords:

Navigation