Skip to main content
Log in

DYNAMICS OF AERODYNAMIC PENDULUM WITH ELASTICLY FIXED SUSPENSION POINT

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The dynamics of an aerodynamic pendulum with an elastically fixed suspension point is considered. The stability of the equilibrium position “along the flow” is studied. In particular, conditions for the parameters under which an increase in the flow velocity leads to the stabilization of this equilibrium are found. In addition, it is shown that, under certain conditions, the character of stability changes three times when the damping coefficient of the helical spring installed at the suspension point changes from zero to infinity. Approximation formulas for the cycles existing in the system under the assumption that their amplitudes are small are obtained. Numerical simulation of the system dynamics has been carried out. Estimates for the coefficient characterizing the efficiency of the flow power conversion using considered pendulum are given. A nonmonotonic dependence of this coefficient on the distance between the center of mass of the pendulum and the suspension point, as well as on the flow velocity, is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Theodorsen, “General theory of aerodynamic instability and the mechanism of flutter. Report 496,” in NACA Technical Reports (Ames Res. Center Classical Aerodyn. Theory., 1935), pp. 291–311.

    Google Scholar 

  2. E. P. Grossman, “Flutter,” Trudy TsAGI 283, 1–248 (1937).

    Google Scholar 

  3. M. V. Keldysh, “Vibrations of a wing with bracing struts in airflow,” Trudy TsAGI 357, 304–341 (1938).

    Google Scholar 

  4. H. C. Gilliatt, T. W. Strganac, and A. J Kurdila, “An investigation of internal resonance in aeroelastic systems,” Nonlin. Dyn. 31, 1–22 (2003). https://doi.org/10.1023/A:1022174909705

    Article  MATH  Google Scholar 

  5. M. Lokatt, “Aeroelastic flutter analysis considering modeling uncertainties,” J. Fluids Struct. 74, 247–262 (2017). https://doi.org/10.1016/j.jfluidstructs.2017.06.017

    Article  ADS  Google Scholar 

  6. L. G. P. Dos Santos and F. D. Marques, “Nonlinear aeroelastic analysis of airfoil section under stall flutter oscillations and gust loads,” J. Fluids Struct. 102, 103250 (2021). https://doi.org/10.1016/j.jfluidstructs.2021.103250

  7. J. I. Thornycroft, US Patent № 1,490,787 (1924).

  8. W. McKinney and J. De Laurier, “Wingmill: an oscillating-wing windmill,” J. Energy 5 (2), 109–115 (1981). https://doi.org/10.2514/3.62510

    Article  Google Scholar 

  9. K. D. Jones, S. T. Davids, and M. F. Platzer, “Oscillating-wing power generation” in Proc. of 3 rd ASME/JSME Joint Fluids Engineering Conf., USA. 1999 (ASME, 1999), pp. 1–6.

  10. Q. Zhu, “Energy harvesting by a purely passive flapping foil from shear flows,” J. Fluids Struct. 34, 157–169 (2012). https://doi.org/10.1016/j.jfluidstructs.2012.05.013

    Article  ADS  Google Scholar 

  11. J. M. McCarthy, S. Watkins, A. Deivasigamani, and S. J. John, “Fluttering energy harvesters in the wind: A review,” J. Sound Vibr. 361, 355–377 (2016). https://doi.org/10.1016/j.jsv.2015.09.043

    Article  ADS  Google Scholar 

  12. A. Abdelkefi, “Aeroelastic energy harvesting: a review,” Int. J. Eng. Sci. 100, 112–135 (2016). https://doi.org/10.1016/j.ijengsci.2015.10.006

    Article  MathSciNet  Google Scholar 

  13. A. Erturk, W. G. R. Vieira, C. De Marqui, and D. Inman, “On the energy harvesting potential of piezoaeroelastic systems,” Appl. Phys. Lett. 96, 184103 (2010). https://doi.org/10.1063/1.3427405

  14. M. Bryant and E. Garcia, “Modeling and testing of a novel aeroelastic flutter energy harvester,” ASME J. Vibr. Acoust. 133 (1), 011010 (2011). https://doi.org/10.1115/1.4002788

  15. S. Li, J. Yuan, and H. Lipson, “Ambient wind energy harvesting using cross-flow fluttering,” J. Appl. Phys. 109 (2), 026104 (2011). https://doi.org/10.1063/1.3525045

  16. A. Abdelkefi, M. Ghommem, A. Nuhait, and M. R. Hajj, “Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters,” J. Sound Vibr. 333, 166–177 (2014). https://doi.org/10.1016/j.jsv.2013.08.032

    Article  ADS  Google Scholar 

  17. T. W. Strganac, J. Ko, D. E. Thompson, and A. J. Kurdila, “Identification and control of limit cycle oscillations in aeroelastic systems,” J. Guid. Contr. Dyn. 23 (6), 1127–1133 (2000). https://doi.org/10.2514/2.4664

    Article  ADS  Google Scholar 

  18. B. Ya. Lokshin and V. A. Samsonov, “The self-induced rotational and oscillatory motions of an aerodynamic pendulum,” J. Appl. Math. Mech. 77 (4), 360–368 (2013) https://doi.org/10.1016/j.jappmathmech.2013.11.004

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Ya. Lokshin, V. A. Samsonov, and M. V. Shamolin, “Pendulum systems with dynamical symmetry,” J. Math. Sci. 227 (4), 461–519 (2017). https://doi.org/10.1007/s10958-017-3597-8

    Article  MathSciNet  MATH  Google Scholar 

  20. V. A. Samsonov, M. Z. Dosaev, and Y. D. Selyutskiy, “Methods of qualitative analysis in the problem of rigid body motion in medium,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 21 (10), 2955–2961 (2013). https://doi.org/10.1142/S021812741103026X

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Dosaev, “Interaction between internal and external friction in rotation of vane with viscous filling,” Appl. Math. Modell. 68, 21–28 (2019). https://doi.org/10.1016/j.apm.2018.11.002

    Article  MathSciNet  MATH  Google Scholar 

  22. R. E. Sheldahl and P. Klimas, “Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines” (Sandia National Labs, Albuquerque, 1981). https://doi.org/10.2172/6548367

  23. V. G. Tabachnikov, “Stationary characteristics of wings at low speeds in the entire range of angles of attack,” Trudy TsAGI 1621, 79–93 (1974).

    Google Scholar 

  24. S. A. Agafonov, “On the stability of a circular system subjected to nonlinear dissipative forces,” Mech. Solids 44, 366–371 (2009). https://doi.org/10.3103/S0025654409030054

    Article  ADS  Google Scholar 

  25. O. N. Kirillov and F. Verhulst, “Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella?” ZAMM 90 (6), 462–488 (2010). https://doi.org/10.1002/zamm.200900315

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. D. Jekel and P. Hagedorn, “Stability of weakly damped MDGKN-systems: The role of velocity proportional terms,” ZAMM 97, 1128–1135 (2017). https://doi.org/10.1002/zamm.201600288

    Article  ADS  MathSciNet  Google Scholar 

  27. L. A. Klimina, “Method for constructing periodic solutions of a controlled dynamic system with a cylindrical phase space,” J. Comput. Syst. Sci. Int. 59, 139–150 (2020). https://doi.org/10.1134/S1064230720020082

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Pigolotti, C. Mannini, G. Bartoli, and K. Thiele, “Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators,” J. Sound Vib. 404, 116–140 (2017). https://doi.org/10.1016/j.jsv.2017.05.024

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Interdisciplinary Scientific and Educational School of Moscow University “Fundamental and Applied Space Research”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Selyutskiy.

Additional information

Translated by A.Borimova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyutskiy, Y.D. DYNAMICS OF AERODYNAMIC PENDULUM WITH ELASTICLY FIXED SUSPENSION POINT. Mech. Solids 57, 792–803 (2022). https://doi.org/10.3103/S0025654422040173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422040173

Keywords:

Navigation