Skip to main content
Log in

A TWO-STAGE METHOD FOR THE FORMATION OF A ROTATING ELECTRODYNAMIC SPACE TETHER SYSTEM

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The process of deployment and transfer to rotation with a given angular velocity of an electrodynamic space tether system in low Earth orbit is considered. The tether system is a linear grouping of three microsatellites connected by current-conducting insulated tethers. The process of forming a tether system is divided into two stages. At the first stage, there is no current in the tether and the relay law for the tension forces is used for the deployment of the system for a given length of the tether. At the second stage, with the help of current control, the system is transferred to a given final state of rotation with a constant angular velocity. To describe the motion of the centers of mass of microsatellites, the Lagrange equations are used. Under the condition of a slow change in tension forces, an analytical estimate was obtained for the characteristics of the angular motion of microsatellites relative to the direction of the tethers. The effectiveness of the considered approach to the formation of a rotating space tether system and the accuracy of analytical solutions are confirmed by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. V. Beletskii and E. M. Levin, Dynamics of Space Tether Systems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  2. R. Zhong and Z. H. Zhu, “Dynamics of nanosatellite deorbit by bare electrodynamic tether in low earth orbit,” J. Spacecr. Rockets 50 (3), 691–700 (2013). https://doi.org/10.2514/1.A32336

    Article  ADS  Google Scholar 

  3. M. Iñarrea, V. Lanchares, A. Pascual, and J. Salas, “Attitude stabilization of electrodynamic tethers in elliptic orbits by time-delay feedback control,” Acta Astronaut. 96, 280–295 (2014). https://doi.org/10.1016/j.actaastro.2013.12.011

    Article  ADS  Google Scholar 

  4. K. R. Fuhrhop, PhD Dissertation (Univ. of Michigan, 2007).

  5. Y. Ohkawa, S. Kawamoto, T. Okumura, et al., “Review of KITE-electrodynamic tether experiment on HTV-6,” Acta Astronaut. 177, 750–758 (2020). https://doi.org/10.1016/j.actaastro.2020.03.014

    Article  ADS  Google Scholar 

  6. E. M. Levin, Dynamic Analysis of Space Tether Missions (Am. Astronaut. Soc., San Diego, 2007). 453 p.

    Google Scholar 

  7. R. Zhong and Z. H. Zhu, “Optimal control of nanosatellite fast deorbit using electrodynamic tether,” J. Guid. Contr. Dyn. 37 (4), 1182–1194 (2014). https://doi.org/10.2514/1.62154

    Article  ADS  Google Scholar 

  8. M. Iñarrea, V. Lanchares, A. I. Pascual, and J. P. Salas, “Attitude stabilization of electrodynamic tethers in elliptic orbits by time-delay feedback control,” Acta Astronaut. 96, 280-295 (2014). https://doi.org/10.1016/j.actaastro.2013.12.011

    Article  ADS  Google Scholar 

  9. X. Zhou, J. Li, H. Baoyin, and V. Zakirov, “Equilibrium control of electrodynamic tethered satellite systems in inclined orbits,” J. Guid. Contr. Dyn. 29 (6), 1451–1454 (2006). https://doi.org/10.2514/1.21882

    Article  ADS  Google Scholar 

  10. P. S. Voevodin and Yu. M. Zabolotnov, “Stabilizing the motion of a low-orbit electrodynamic tether system,” J. Comput. Syst. Sci. Int. 58 (2), 270–285 (2019). https://doi.org/10.1134/S1064230719020175

    Article  MathSciNet  MATH  Google Scholar 

  11. P. S. Voevodin and Yu. M. Zabolotnov, “Analysis of the dynamics and choice of parameters of an electrodynamic space tether system in the thrust generation mode,” Cosmic Res. 58 (1), 42–52 (2020). https://doi.org/10.1134/S0010952520010062

    Article  ADS  Google Scholar 

  12. X. Chen and J. R. Sanmartín, “Bare-tether cathodic contact through thermionic emission by low-work-function materials,” Phys. Plasmas. 19, 1-8 (2012). https://doi.org/10.1063/1.4736987

    Article  Google Scholar 

  13. G. Sánchez-Arriaga, C. Bombardelli, and X. Chen, “Impact of nonideal effects on bare electrodynamic tether performance,” J. Propul. Power. 31 (3), 951–955 (2015). https://doi.org/10.2514/1.B35393

    Article  Google Scholar 

  14. V. M. Kulkov, Yu. G. Yegorov, and S. A. Tuzikov, “Investigation of integral energy characteristics of the space electrodynamic tether system designed for orbital experiments,” Izv. Akad. Nauk, Energetika, No. 3, 114–127 (2017).

  15. V. M. Kulkov, Yu. G. Yegorov, and S. A. Tuzikov, “Study of configuration and creation of concept design for the deployed space electrodynamic tether system as a part of orbital spacecraft,” Izv. Akad. Nauk, Energetika, No. 3, 119–130 (2018). https://doi.org/10.7868/S0002331018030123

  16. S. A. Ishkov and S. A. Naumov, “Control over orbital tether system unfolding,” Vestnik Samar. Gos. Aerokosm. Univ. 5 (1), 77–85 (2006).

    Google Scholar 

  17. M. Kruijff, Tethers in Space (Delta-Utec Space Research, Netherlands, 2011).

    Google Scholar 

  18. Yu. M. Zabolotnov, “Dynamics of the formation of a rotating orbital tether system with the help of electro-thruster,” Procedia Eng. 185, 261–266 (2017). https://doi.org/10.1016/j.proeng.2017.03.339

    Article  Google Scholar 

  19. P. S. Voevodin and Y. M. Zabolotnov, “On stability of the motion of electrodynamic tether system in orbit near the Earth,” Mech. Solids 54, 890–902 (2019). https://doi.org/10.3103/S0025654419060050

    Article  ADS  MATH  Google Scholar 

  20. Y. M. Zabolotnov and O. N. Naumov, “Motion of a descent capsule relative to its center of mass when deploying the orbital tether system,” Cosmic. Res. 50, 177–187 (2012). https://doi.org/10.1134/S0010952512020098

    Article  ADS  Google Scholar 

  21. Fundamentals of the Theory of Spacecraft Flight, Ed. by G. S. Narimanov and M. K. Tikhonravov (Mashinostroenie, Moscow, 1972) [in Russian].

    Google Scholar 

  22. Y. M. Zabolotnov, “Application of the integral manifold method to the analysis of the spatial motion of a rigid body fixed to a cable,” Mech. Solids 51, 371–384 (2016). https://doi.org/10.3103/S0025654416040014

    Article  ADS  Google Scholar 

  23. L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1988) [in Russian].

  24. Yu. M. Zabolotnov, “The resonance motions of a statically stable Lagrange top at small nutation angles,” J. Appl. Math. Mech. 80 (4), 302–310 (2016). https://doi.org/10.1016/j.jappmathmech.2016.09.004

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research and the SFES of China within the framework of the scientific project no. 20-51-53002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. M. Zabolotnov, P. S. Voevodin or Lu Hongshi.

Additional information

Translated by I. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotnov, Y.M., Voevodin, P.S. & Hongshi, L. A TWO-STAGE METHOD FOR THE FORMATION OF A ROTATING ELECTRODYNAMIC SPACE TETHER SYSTEM. Mech. Solids 57, 462–475 (2022). https://doi.org/10.3103/S0025654422030232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422030232

Keywords:

Navigation