Skip to main content
Log in

Elasto-Plastic Stress Analysis in a Tube Made of Isotropic Material and Subjected to Pressure and Mechanical Load

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

This article deals with the study of elasto-plastic stress distribution in a tube made of isotropic material (say steel/copper) and subjected to uniform pressure and mechanical load. Seth’s transition theory and generalized strain measure are used for finding the governing equation. Mathematical modeling is based on stress –strain relation and equilibrium equation. Analytical solutions are presented thick walled tube made of steel and copper materials. The effects of different pertinent parameters (i.e. load and pressure) are considered for tube made of steel/copper material. The behaviour of stress distribution, and pressure rise are investigated. From the obtained results, it is noticed copper material tube requires higher dimensionless pressure to yield at the internal surface in comparison to steel material. The value of pressure decreases with increasing mechanical loads. By applying mechanical loads, the values of hoop radial stresses are increasing at the external surface of the contraction/extension region of tube. The theoretical results are validated by comparing them with those obtained by Seth after performing some significant calculation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Timoshenko, and J.N. Goodier, Theory of Elasticity (McGraw-Hill Book Company, New York, 1970).

    MATH  Google Scholar 

  2. P. Chadwick, “Compression of a spherical shell of work-hardening material,” Int. J. Mech. Sci., 5 (2), 165–182 (1963). https://doi.org/10.1016/0020-7403(63)90020-1

    Article  MathSciNet  Google Scholar 

  3. L. H. You, J. J. Zhang, and X. Y. You, “Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials,” Int. J. Pres. Ves. Pip., 82 (5),347–354 (2005). https://doi.org/10.1016/j.ijpvp.2004.11.001

    Article  Google Scholar 

  4. R. Sburlati, “Analytical elastic solutions for pressurized hollow cylinders with internal functionally graded coatings,” Compos. Struct. 94 (12), 3592–3600 (2012). https://doi.org/10.1016/j.compstruct.2012.05.018

    Article  Google Scholar 

  5. D. R. Bland, “Elastoplastic thick-walled tubes of work-hardening material subject to internal and external pressure and to temperature gradients,” J. Mech. Phys. Solids 4 (4), 209–229 (1956). https://doi.org/10.1016/0022-5096(56)90030-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. U. Gamer, W. Austria, and R. H. Lance, “Stress distribution in a rotating elastic-plastic tube,”Acta Mech. 50,1–8 (1983). https://doi.org/10.1007/BF01170437

    Article  MATH  Google Scholar 

  7. J. Bree, “Plastic deformation of a closed tube due to interaction of pressure stresses and cyclic thermal stresses,” Int. J. of Mech. Sci. 31 (11–12), 865–892 (1989). https://doi.org/10.1016/0020-7403(89)90030-1

  8. G. Mufit and O. Yusuf, “Elastic-plastic deformation of a heat generating tube with temperature dependent yield stress,” Int. J. Eng. Sci. 38 (1), 89–106 (2000). https://doi.org/10.1016/S0020-7225(99)00014-2

    Article  Google Scholar 

  9. O. Yusuf and G. Mufit, “Elastic-plastic deformation of a tube with free ends subjected to internal energy generation,” Turk. J. Eng. Environ. Sci. 25, 601–610 (2001).

    Google Scholar 

  10. F. Figueiredo,L. Borges, and R. Fernando, “Elasto-plastic stress analysis of thick-walled FGM pipes,” AIP Conf. Proc. 973, 147 (2008). https://doi.org/10.1063/1.2896766

    Article  ADS  Google Scholar 

  11. A. El- Megharbel, G. A. El Nasser, and A. El Domiaty, “Bending of tube and section made of strain-hardening materials,” J. Mater. Proc. Technol. 203 (1–3), 372–380 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.078

  12. K. Song, Y. Long, J. Chong, and G. Fuyin, “Plastic deformation of metal tubes subjected to lateral blast loads,” Math. Probl. Eng. 2014, 250379 (2014). https://doi.org/10.1155/2014/250379

  13. P. Kozlovsky, U. Zaretsky, A. J. Jaffa, and D. Elad, “General tube law for collapsible thin and thick-wall tubes,” J. Biomech. 47 (10), 2378–2384 (2014). https://doi.org/10.1016/j.jbiomech.2014.04.033

    Article  Google Scholar 

  14. L. Xin, G. Dui, S. Y. Yang, and Y. Liu, “Elastic-plastic analysis for functionally graded thick-walled tube subjected to internal pressure,” Adv. Appl. Math. Mech. 8 (2), 331–352 (2016). https://doi.org/10.4208/aamm.2014.m841

    Article  MathSciNet  MATH  Google Scholar 

  15. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, “Elastoplastic deformation of dispersion-hardened aluminum tube under external pressure,” Russ. Phys. J. 61, 1520–1528 (2018). https://doi.org/10.1007/s11182-018-1565-5

    Article  Google Scholar 

  16. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, “Elastoplastic deformation of dispersion-hardened aluminum tube under external and internal pressure,” Russ. Phys. J. 62, 720–728 (2019). https://doi.org/10.1007/s11182-019-01769-x

    Article  Google Scholar 

  17. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, “Mathematical modeling of plastic deformation of a tube from dispersion-hardened aluminum alloy in an inhomogeneous temperature field,” Crystals 10 (12), 1103 (2020). https://doi.org/10.3390/cryst10121103

    Article  Google Scholar 

  18. C. Qian, Z. Wu, S. Wen,et al., “Study of the mechanical properties of highly efficient heat exchange tubes,” Mater. 13 (2), 382 (2020). https://doi.org/10.3390/ma13020382

    Article  Google Scholar 

  19. B. R. Seth, “Transition theory of elastic – plastic deformation, creep and relaxation,” Nature 195, 896–897 (1962). https://doi.org/10.1038/195896a0

    Article  ADS  Google Scholar 

  20. B. R. Seth, “Finite strain in elastic problems,” Phil. Trans. Roy. Soc. Lond. A 234 (738), 231-264 (1935). https://doi.org/10.1098/rsta.1935.0007

    Article  ADS  MATH  Google Scholar 

  21. I. S. Sokolnikoff, Mathematical Theory of Elasticity, 2nd ed. (McGraw-Hill Book Company, New York, 1956).

    MATH  Google Scholar 

  22. B. R. Seth, “Elastic-plastic transition in shells and tubes under pressure,” ZAMM 43 (7–8), 345–351 (1963). https://doi.org/10.1002/zamm.19630430706

  23. B. R. Seth, “Transition condition, the yield condition,” Int. J. Non-Lin. Mech. 5 (2), 279–285 (1970). https://doi.org/10.1016/0020-7462(70)90025-9

    Article  MATH  Google Scholar 

  24. A. G. Temesgen, S. B. Singh, and P. Thakur, “Modeling of creep deformation of a transversely isotropic rotating disc with a shaft having variable density and subjected to a thermal gradient,” Therm. Sci. Eng. Prog. 20,100745 (2020). https://doi.org/10.1016/j.tsep.2020.100745

  25. M. Sethi, and P. Thakur, “Elasto-plastic deformation in isotropic material disk with shaft subjected to load and variable density,” J. Rubber Res. 23 (2), 69–78 (2020). https://doi.org/10.1007/s42464-020-00038-8

    Article  Google Scholar 

  26. P. Thakur, M. Sethi, N. Gupta, and K. Gupta, “Effect of density parameter in a disk made of orthotropic material and rubber,” J. Rubber Res. 23 (3), 193–201 (2020). https://doi.org/10.1007/s42464-020-00049-5

    Article  Google Scholar 

  27. P. Thakur, N. Gupta, M. Sethi, and K. Gupta, “Elastic-plastic transition in an orthotropic material disk,” Struct. Integr. Life 20 (2), 169–172 (2020).

    Google Scholar 

  28. P. Thakur and M. Sethi, “Elasto-plastic deformation in an orthotropic spherical shell subjected to temperature gradient,” Math. Mech. Solids 25 (1), 26–34 (2020). https://doi.org/10.1177/1081286519857128

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Thakur, M. Sethi, N. Kumar, et al., “Analytical solution of hyperbolic deformable disk having variable density,” Mech. Solids 56 (6), 1039–1046 (2021). https://doi.org/10.3103/S0025654421060194

    Article  ADS  Google Scholar 

  30. P. Thakur, M. Sethi, N. Kumar, et al., “Stress analysis in an isotropic hyperbolic rotating disk fitted with rigid shaft,” Z. Angew. Math. Phys.73,23 (2022).https://doi.org/10.1007/s00033-021-01663-y

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Thakur, N. Kumar, and M. Sethi, “Elastic-plastic stresses in a rotating disc of transversely isotropic material fitted with a shaft and subjected to thermal gradient,” Meccanica 56, 1165–1175 (2021). https://doi.org/10.1007/s11012-021-01318-2

    Article  MathSciNet  Google Scholar 

  32. P. Thakur, M. Sethi, N. Gupta, and K. Gupta, “Thermal effects in rectangular plate made of rubber, copper and glass materials,” J. Rubber Res. 24,147–155 (2021). https://doi.org/10.1007/s42464-020-00080-6

    Article  Google Scholar 

  33. P. Thakur, M. Sethi, K. Gupta, and R.K. Bhardwaj, “Thermal stress analysis in a hemispherical shell made of transversely isotropic materials under pressure and thermo-mechanical loads,” ZAMM 101, e202100208 (2021). https://doi.org/10.1002/zamm.202100208

Download references

ACKNOWLEDGMENTS

The authors are grateful to the referee for his critical comments, which led to a significant improvement of the paper.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thakur.

Ethics declarations

R0 = a/b, R = r/b (Radii ratio), σr = τrr/Y (Radial stress component), σθ = τθθ/Y (Circumferential stress component), L0 = l0/Y (Mechanical load), P = p/Y (Pressure)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K., Thakur, P. & Bhardwaj, R.K. Elasto-Plastic Stress Analysis in a Tube Made of Isotropic Material and Subjected to Pressure and Mechanical Load. Mech. Solids 57, 617–628 (2022). https://doi.org/10.3103/S002565442203013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565442203013X

Keywords:

Navigation