Skip to main content
Log in

A Corten-Dolan model considering material strength degradation

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract –

Based on the Corten-Dolan model and the law of material residual strength degradation, a new nonlinear fatigue accumulation damage model is established. Combining the traditional material residual strength degradation model with the equivalent damage law, a material residual strength model suitable for variable amplitude loading is established. Subsequently, based on the above residual strength model, the material residual strength attenuation coefficient is constructed by using the ratio of material residual strength to initial strength, and it is introduced into the traditional Corten-Dolan model and its key parameter d to improve the model. The proposed model can not only consider the influence of residual strength on damage accumulation, but fully consider the influence of small load, stress state and damage degree as well. According to the test data of aluminum alloy 7070 - T7451, titanium alloy Ti-6Al-4V, ductile iron GS61, 45 steel, 16Mn steel, and aluminum alloy welded joints, it is verified that compared with the traditional Corten-Dolan model, the established model has higher accuracy in fatigue life prediction under two-level block loading or multi-level block loading. The proposed model can better calculate the fatigue life of metal materials under multi-level variable amplitude loading and the mathematical expression is relatively simple and has strong engineering practicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. W. Zhang, W. Jiang, X. Zhao, et al., “Fatigue life of a dissimilar welded joint considering the weld residual stress: Experimental and finite element simulation,” Int. J. Fatigue 109, 182–190 (2018). https://doi.org/10.1016/j.ijfatigue.2018.01.002

    Article  Google Scholar 

  2. C. Shao, H. Cui, F. Lu, et al., “Quantitative relationship between weld defect characteristic and fatigue crack initiation life for high-cycle fatigue property,” Int. J. Fatigue 123, 238–247 (2019). https://doi.org/10.1016/j.ijfatigue.2019.02.028

    Article  Google Scholar 

  3. R. C. Brzostek, U. Suhuddin, and J. F. Dos Santos, “Fatigue assessment of refill friction stir spot weld in AA 2024-T3 similar joints,” Fatigue Fract. Eng. Mater. Struct. 41 (5), 1208–1223 (2018). https://doi.org/10.1111/ffe.12764

    Article  Google Scholar 

  4. S. P. Zhu, Z. Y. Yu, Q. Liu, et al., “Strain energy-based multiaxial fatigue life prediction under normal/shear stress interaction,” Int. J. Damage Mech. 28 (5), 708–739 (2019). https://doi.org/10.1177/1056789518786031

    Article  Google Scholar 

  5. S. P. Zhu, Q. Lei, H. Z. Huang, et al., “Mean stress effect correction in strain energy-based fatigue life prediction of metals,” Int. J. Damage Mech. 26 (8), 1219–1241 (2017). https://doi.org/10.1177/1056789516651920

    Article  Google Scholar 

  6. L. Xi and Z. Songlin, “Strengthening and damaging under low-amplitude loads below the fatigue limit,” Int. J. Fatigue 31, 341–345 (2009). https://doi.org/10.1016/j.ijfatigue.2008.08.004

    Article  Google Scholar 

  7. H. Mayer, “Fatigue damage of low amplitude cycles in low carbon steel,” J. Mater. Sci. 44, 4919–4929 (2009). https://doi.org/10.1007/s10853-009-3751-x

    Article  ADS  Google Scholar 

  8. S. P. Zhu, H. Z. Huang, and Z. L. Wang, “Fatigue life estimation considering damaging and strengthening of low amplitude loads under different load sequences using fuzzy sets approach,” Int. J. Damage Mech. 20, 876–899 (2011). https://doi.org/10.1177/1056789510397077

    Article  Google Scholar 

  9. K. Rege and D. G. Pavlou, “A one-parameter nonlinear fatigue damage accumulation model,” Int. J. Fatigue 98, 234-246 (2017). https://doi.org/10.1016/j.ijfatigue.2017.01.039

    Article  Google Scholar 

  10. L. Si-Jian, L. Wei, T. Da-Qing, and L. Jun-Bi, “A new fatigue damage accumulation model considering loading history and loading sequence based on damage equivalence,” Int. J. Damage Mech. 27, 707–728 (2018). https://doi.org/10.1177/1056789517701531

    Article  Google Scholar 

  11. J. P. Dias, S. Ekwaro-Osire, A.Cunha Jr, et al., “Parametric probabilistic approach for cumulative fatigue damage using double linear damage rule considering limited data,” Int. J. Fatigue 127, 246–258 (2019). https://doi.org/10.1016/j.ijfatigue.2019.06.011

    Article  Google Scholar 

  12. S. P. Zhu, D. Liao, Q. Liu, et al., “Nonlinear fatigue damage accumulation: isodamage curve-based model and life prediction aspects,” Int. J. Fatigue 128, 105185 (2019). https://doi.org/10.1016/j.ijfatigue.2019.105185

    Article  Google Scholar 

  13. H. T. Corten and T. J. Dolan, “Cumulative fatigue damage,” in Proceedings of the International Conference on Fatigue of Metals, London, 10-14 September, 1956, New York, 28–30 November, 1956 (Institution of Mechanical Engineering Great Britain, London, 1956), Vol. 1, pp. 235–242.

  14. Q. Liu, Y. Gao, Y. Li, et al., “Fatigue life prediction based on a novel improved version of the Corten-Dolan model considering load interaction effect,” Eng. Struct. 221, 111036 (2020). https://doi.org/10.1016/j.engstruct.2020.111036

    Article  Google Scholar 

  15. S. P. Zhu, H. Z. Huang, Y. Liu, et al., “A practical method for determining the Corten-Dolan exponent and its application to fatigue life prediction,” Int. J. Turbo. Jet. Eng. 29, 79–87 (2012). https://doi.org/10.1515/tjj-2012-0013

    Article  ADS  Google Scholar 

  16. A. D' Amore and L. Grassia, “A method to predict the fatigue life and the residual strength of composite materials subjected to variable amplitude (VA) loadings,” Compos. Struct. 228, 111338 (2019). https://doi.org/10.1016/j.compstruct.2019.111338

    Article  Google Scholar 

  17. W. J. R. Christian, F. A. DiazDelaO and E. A. Patterson, “Strain-based damage assessment for accurate residual strength prediction of impacted composite laminates,” Compos. Struct. 184, 1215–1223 (2018). https://doi.org/10.1016/j.compstruct.2017.10.022

    Article  Google Scholar 

  18. L. Y. Xie and W. Q. Lin, “Probability criterion of linear cumulative damage,” J. Mech. Strength. 3, 41–44 (1993).

    Google Scholar 

  19. H. Gao, H. Z. Huang, Z. Lv, et al., “An improved Corten-Dolan’s model based on damage and stress state effects,” J. Mech. Sci. Technol. 29, 3215–3223 (2015). https://doi.org/10.1007/s12206-015-0721-x

    Article  Google Scholar 

  20. X. Y. Zhang, Life and Reliability Analysis of Aero-Engine Turbine Disc (Univ. Electronic Science and Technology of China, 2020) [in Chinese].

    Google Scholar 

  21. A. L. Carvalho, J. P. Martins, and H. J. Voorlwad, “Fatigue damage accumulation in aluminum 7050-T7451 alloy subjected to block programs loading under step-down sequence,” Procedia Eng. 2 (1), 2037–2043 (2010). https://doi.org/10.1016/j.proeng.2010.03.219

    Article  Google Scholar 

  22. O. Jin, H. Lee and S. Mall, “Investigation into cumulative damage rules to predict fretting fatigue life of Ti-6Al-4V under two-level block loading condition” J. Eng. Mater. Technol. 125 (3), 315–323 (2003). https://doi.org/10.1115/1.1590998

    Article  Google Scholar 

  23. A. Aïd, A. Amrouche, B. Bouiadjra, et al, “Fatigue life prediction under variable loading based on a new damage model,” Mater. Des. 32, 183–191 (2011). https://doi.org/10.1016/j.matdes.2010.06.010

    Article  Google Scholar 

  24. D. G. Shang and W. X. Yao, “A nonlinear damage cumulative model for uniaxial fatigue,” Int. J. Fatigue 21 (2) 187–194 (1999). https://doi.org/10.1016/S0142-1123(98)00069-3

    Article  Google Scholar 

  25. J. Tian, Z. M. Liu, and R. He, “Nonlinear fatigue-cumulative damage model for welded aluminum alloy joint of EMU,” J. China Railw. Soc. 34, 40–43 (2012). https://doi.org/10.3969/j.issn.1001-8360.2012.03.007

    Article  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Liaoning Province (no. 2019KF0204); the State Key Laboratory of Structural Analysis for Industrial Equipment Open Funding, Dalian University of Technology (GZ19204); and Liaoning Province 2020 College Innovation Talents Support Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiwen Xue.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Xue, Q. & He, Y. A Corten-Dolan model considering material strength degradation. Mech. Solids 57, 149–162 (2022). https://doi.org/10.3103/S002565442201006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565442201006X

Keywords:

Navigation