Skip to main content
Log in

Long-Wave Vibrations and Long Waves in an Anisotropic Plate

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Free vibrations and plane waves are analyzed in the linear approximation for a thin elastic, anisotropic infinite plate having constant thickness. A general anisotropy described by 21 elastic moduli is considered. It is assumed that the moduli of elasticity and density are independent in the tangential coordinates but can depend on the coordinate along the thickness of the plate. Multilayer and functionally gradient plates are also considered. Assuming that the wavelength significantly exceeds the thickness of the plate, an asymptotic power expansion is obtained for a small thickness parameter for a harmonic solution of the system using the three-dimensional equations in tangential coordinates provided by the elasticity theory. For fixed values of wave numbers, there are only three long-wave solutions available: one low-frequency bending and two shearing ones. Dispersion equations are obtained for these solutions with accuracy to the terms of the second order of smallness in the dimensionless thickness. Bending solutions are characterized by a strong dependence of frequency on the wavelength, while the tangential waves propagate with low dispersion. Particular types of anisotropy are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Kirchhoff, Vorlesungen über Matematische Physik. Mechanik (Teubner, Leipzig, 1876).

    MATH  Google Scholar 

  2. A. E. H. Love, A Treatise on the Mathematical Theory Elasticity (Univ. Press, Cambridge, 1927).

    MATH  Google Scholar 

  3. S. P. Timoshenko, “On the correction for shear of the differential equation for transverse vibration of prismatic bars,” Philos. Mag. 41, Ser. 6, 744–746 (1921).

  4. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” Trans. ASME, J. Appl. Mech. 12, 69–77 (1945).

    MathSciNet  Google Scholar 

  5. Ya. S. Uflyand, “Waves propagation at bending vibrations of rods and plates,” Prikl. Mat. Mekh. 12 (3), 287–300 (1948).

    MathSciNet  Google Scholar 

  6. R. D. Mindlin, “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” ASME. J. Appl. Mech 18, 31–38 (1951).

    MATH  Google Scholar 

  7. I. N. Vekua, “On the method of prismatic shells design,” Tr. Tbil. Mat. Inst. 21, 191–259 (1955).

    MathSciNet  Google Scholar 

  8. V. A. Rodionova, B. F. Titaev, and K. F. Chernykh, Applied Theory of Anisotropic Plates and Shells (St. Petersburg Univ., St. Petersburg, 1996) [in Russian].

    Google Scholar 

  9. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells (CRC Press, Boca Raton, FL, 2003).

    Book  Google Scholar 

  10. A. L. Goldenweizer, Theory of Elastic Thin Shells (Pergamon Press, New York, 1961).

    Google Scholar 

  11. L. A. Agolovyan, Asymptotic Theory of Anisotropic Plates and Shells (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  12. Y. Vetukov, A. Kuzin, and M. Krommer, “Asymptotic splitting of the three-dimensional problem of elasticity for non-homogeneous piezoelectric plates,” Int. J. Solids Struct. 40, 12–23 (2011).

    Article  Google Scholar 

  13. R. Kienzler and P. Shneider, “Comparison of various linear plate theories in the light of a consistent second order approximation,” in Proc. 10th SSTA Conf. on Shell Structures – Theory and Applications (Gdansk, 2013), Vol. 3, pp. 109–112

  14. P. Schneider and R. Kienzler, “A Reissner-type plate theory for monoclinic material derived by extending the uniform-approximation technique by orthogonal tensor decompositions of nth-order gradients,” Meccanica 52, 2143–2167 (2017).

    Article  MathSciNet  Google Scholar 

  15. P. E. Tovstik, “On the asymptotic character of approximate models of beams, plates and shells,” Vestn. St. Peterburg. Gos. Univ., Ser. 1, No. 3, 49–54 (2007).

    Google Scholar 

  16. P. E. Tovstik and T. P. Tovstik, “A thin-plate bending equation of second-order accuracy,” Dokl. Phys. 59 (8), 389–392 (2014).

    Article  ADS  Google Scholar 

  17. N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “The Timoshenko–Reissner generalized model of a plate highly nonuniform in thickness,” Dokl. Phys. 61, 394–398 (2016).

    Article  ADS  Google Scholar 

  18. P. E. Tovstik and T. P. Tovstik, “Generalized Timoshenko-Reissner models for beams and plates, strongly heterogeneous in the thickness direction,” Z. Angew. Math. Mech. 97 (3), 296–308 (2017).

    Article  MathSciNet  Google Scholar 

  19. P. Tovstik and T. Tovstik, “An elastic plate bending equation of second-order accuracy,” Acta Mech. 228 (10), 3403–3419 (2017).

    Article  MathSciNet  Google Scholar 

  20. N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Continuum model of a multi-layered nano-plate,” Dokl. Phys. 61 (11), 567–570 (2016).

    Article  ADS  Google Scholar 

  21. N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, Free Vibrations of a Transversely Isotropic Plate with Application to a Multilayered Nano-Plate (Springer, Cham, 2017), pp. 349–362.

    MATH  Google Scholar 

  22. N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, “Two-dimensional equations of second order accuracy for a multilayered plate with orthotropic layers,” Dokl. Phys. 63 (11), 471–475 (2018).

    Article  ADS  Google Scholar 

  23. A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Two-dimensional linear model of multilayered anisotropic plate,” Acta Mech. 230, 2891–2904 (2019).

    Article  MathSciNet  Google Scholar 

  24. P. E. Tovstik and T. P. Tovstik, “Two-dimensional models of plates made of an anisotropic material,” in Proc. Seminar Computer Methods in Continuous Mechanics (St. Petersburg Univ., St. Petersburg, 2008), Vol. 3, pp. 4–16 [in Russian].

  25. P. E. Tovstik and T. P. Tovstik, “Two-dimensional model of a plate made of an anisotropic inhomogeneous material,” Mech. Solids 52 (2), 144–154 (2017).

    Article  ADS  Google Scholar 

  26. P. E. Tovstik, “Two-dimensional model of second-order accuracy for an anisotropic plate,” Vestn. St. Petersburg Gos. Univ. Mat. Mekh. Astron. 6(64) (1), 157–169 (2019).

  27. A. K. Belyaev, N. F. Morozov, P. E. Tovstik, T. P. Tovstik, and A. V. Zelinskaya, “Two-dimensional model of plate made of material with general anisotropy,” in Recent Developments in the Theory of Shells (Springer, Cham, 2019), pp. 91–108.

    MATH  Google Scholar 

  28. J. D. Kaplunov, L. Yu. Kossovich, and E. V. Nolde, Dynamics of Thin Walled Elastic Bodies (Acad. Press, San Diego, 1998).

    MATH  Google Scholar 

  29. G. I. Mikhasev and P. E. Tovstik, Localized Vibrations and Waves in Thin Shells. Asymptotic Methods (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  30. V. M. Babich and V. P. Kiselev, Elastic Waves. High-Frequency Theory (CRC Press, Boca Raton, 2020).

    MATH  Google Scholar 

  31. G. I. Mikhasev and P. E. Tovstik, Localized Dynamics of Thin-Walled Shells (CRC Press, Boca-Raton, 2020).

  32. A. K. Belyaev, A. V. Zelinskaya, D. N. Ivanov, N. F. Morozov, N. V. Naumova, P. E. Tovstik, and T. P. Tovstik, “Approximate theory of a laminated anisotropic plate vibrations,” Izv. Sarat. Univ. Nov. Ser. Ser. Mat. Mekh. Inform. 18 (4), 396–411 (2018).

    MATH  Google Scholar 

  33. L. Pochhammer, “Uber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder,” J. Reine Angew. Math. 81, 324–336 (1876).

    MathSciNet  MATH  Google Scholar 

  34. C. Chree, “Longitudinal vibrations of a circular bar,” Quart. J. Pure Appl. Math. 21, 287–291 (1886).

    MATH  Google Scholar 

  35. A. V. Ilyashenko and S. V. Kuznetsov, “Pochhammer-Chree waves: polarization of the axially symmetric modes,” Arch. Appl.Mech. 88 (8), 1385–1394 (2018).

    Article  ADS  Google Scholar 

  36. A. V. Il’yashenko, “Longitudinal Pochhammer Chree waves: anormal polarization,” J. Mech. 35 (3), 327–334 (2019).

    Article  Google Scholar 

  37. P. Lee and N. Chang, “Harmonic waves in elastic sandwich plates,” J. Elast. 9 (1), 51–69 (1979).

    Article  Google Scholar 

  38. J. D. Kaplunov, D. A. Prikazchikov, and L. A. Prikazchikova, “Dispersion of elastic waves in a strongly inhomogeneous three-layered plate,” Int. J. Solids Struct. 113–114, 169–179 (2017).

    Article  Google Scholar 

  39. L. V. Parshina, V. M. Ryabov, and B. A. Yartsev, “Energy dissipation during vibrations of non-uniform composite structures. 1. Formulation of the problem,” Vestn. St. Petersburg Gos. Univ. Mat. Mekh. Astron. 5(63) (2), 300–309 (2018).

  40. L. V. Parshina, V. M. Ryabov, and B. A. Yartsev, “Energy dissipation during vibrations of non-uniform composite structures. 2. Method of solution,” Vestn. St. Petersburg Gos. Univ. Mat. Mekh. Astron. 5(63) (4), 678–688 (2018).

  41. L. V. Parshina, V. M. Ryabov, and B. A. Yartsev, “Energy dissipation during vibrations of non-uniform composite structures. 3. Numerical experiments,” Vestn. St. Petersburg Gos. Univ. Mat. Mekh. Astron. 6(64) (1), 144–156 (2019).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grants nos. 18-01-00884a, 19-01-00208a, and 20-51-52001 MHT-a.

Dedicated to the good memory of Robert Veniaminovich Goldstein.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. F. Morozov, P. E. Tovstik or T. P. Tovstik.

Additional information

Translated by V. Vetrov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, N.F., Tovstik, P.E. & Tovstik, T.P. Long-Wave Vibrations and Long Waves in an Anisotropic Plate. Mech. Solids 55, 1253–1266 (2020). https://doi.org/10.3103/S0025654420080166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420080166

Keywords:

Navigation