Skip to main content
Log in

Experimental and Theoretical Method for Determining Mechanical Characteristics of Soils under Dynamic Loads

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The results of laboratory experiments on the dynamic compression of loess soil samples at a falling weight deflectometer (FWD) are presented. From the results of the experiments, preliminary values of the mechanical characteristics of soils are determined. A numerical solution of the wave problem, the statement of which is identical to the experiment conditions is obtained. Based on the analysis of the results of numerical solution of the wave problem, the conditions for the quasistatic deformation of soil under dynamic loading in the experiment are obtained. By comparing the results of the experiment and numerical calculations and using successive approximation, the refined values of the mechanical characteristics of loess soil are determined on the basis of an elastoviscoplastic model of soil deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Giretti, V. Fioravante, K. Been, and S. Dickenson, “Mechanical properties of a carbonate sand from a dredged hydraulic fill,” Geotech. 68(5), 410–420 (2018).

    Article  Google Scholar 

  2. A. Suddeepong, J. Chai, S. Shen, and J. Carter, “Deformation Behaviour of Clay under Repeated One-Dimensional Unloading-Reloading,” Can. Geotech. J. 52 (8), 1035–1044 (2015).

    Article  Google Scholar 

  3. S. Nishimura, “Assessment of Anisotropic Elastic Parameters of Saturated Clay Measured in Triaxial Apparatus: Appraisal of Techniques and Derivation Procedures,” Soils Found. 2014. 54 (3), 364–376 (2014).

    Article  Google Scholar 

  4. G. Mitaritonna, A. Amorosi, and F. Cotecchia, “Experimental Investigation of the Evolution of Elastic Stiffness Anisotropy in a Clayey Soil,” Geotech. 64 (6), 463–475 (2014).

    Article  Google Scholar 

  5. W. Frikha, F. Tounekti, W. Kaffel, and M. Bouassida, “Experimental Study for the Mechanical Characterization of Tunis Soft Soil Reinforced by a Group of Sand Columns,” Soils Found. 55 (1), 181–191 (2015).

    Article  Google Scholar 

  6. H. Abdi, D. Labrie, T. S. Nguyen, J. D. Barnichon, et al., “Laboratory Investigation on the Mechanical Behaviour of Tournemire Argillite,” Can. Geotech. J. 52 (3), 268–282 (2015).

    Article  Google Scholar 

  7. S. Lenart, J. Koseki, Y. Miyashita, and T. Sato, “Large-Scale Triaxial Tests of Dense Gravel Material at Low Confining Pressures,” Soils Found. 54(1) 45–55 (2014).

    Article  Google Scholar 

  8. D. Porcino, V. N. Ghionna, R. Granata, and V. Marciano, “Laboratory Determination of Mechanical and Hydraulic Properties of Chemically Grouted Sands,” Geomech. Geoengng Int. J. 11 (2), 164–175 (2016).

    Article  Google Scholar 

  9. K. R. Devi, R. B. Sahu, and S. Mukherjee, “Response of Organic Clay under Cyclic Loading,” Int. J. Geotech. Engng 8 (2), 130–143 (2014).

    Article  Google Scholar 

  10. H. Zhou, Y. Yang, C. Zhang, and D. Hu, “Experimental Investigations on Loadingrate Dependency of Compressive and Tensile Mechanical Behaviour of Hard Rocks,” Eur. J. Env. Civil Engng 19 (1), 70–82 (2015).

    Article  Google Scholar 

  11. K. Senetakis, A. Anastasiadis, and K. Pitilakis, “Normalized Shear Modulus Reduction and Damping Ratio Curves of Quartz Sand and Rhyolitic Crushed Rock,” Soils Found. 53 (6), 879–893 (2013).

    Article  Google Scholar 

  12. J. P. Morton, C. D. O’Loughlin, and D. J. White, “Estimation of Soil Strength in Fine-Grained Soils by Instrumented Free-Fall Sphere Tests,” Geotech. 66 (12), 959–968 (2016).

    Article  Google Scholar 

  13. S. H. Chow, C. D. O’Loughlin, and M. F. Randolph, “Soil Strength Estimation and Pore Pressure Dissipation for Free-Fall Piezocone in Soft Clay,” Geotech. 64 (10), 817–827 (2014).

    Article  Google Scholar 

  14. D. Porcino, V. Marciano, and R. Granata, “Static and Dynamic Properties of a Lightly Cemented Silicate-Grouted Sand,” Can. Geotech. J. 49 (10), 1117–1133 (2012).

    Article  Google Scholar 

  15. C. Kurtulus, M. Ückardes, U. Sarir, and O. S. Güner, “Experimental Studies in Wave Propagation Across a Jointed Rock Mass,” Bull. Engng Geo. Env. 71 (2), 231–234 (2011).

    Article  Google Scholar 

  16. G. V. Rykov and A. M. Skobeev, Stress Measurement in Soils under Short-Term Loads (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  17. Yu. V. Kulinich, Z. V. Narozhnaya, and G. V. Rykov, “Mechanical Characteristics of Sandy and Clay Soils, Taking into Account Their Viscoplastic Properties under Short-Term Dynamic Doads,” Preprint No. 69. IPMAN SSSR (Inst. for Problems in Mechanics, Moscow, 1976).

    Google Scholar 

  18. G. M. Lyakhov, Waves in Soils and Porous Multicomponent Media (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  19. A. A. Vovk, V. G. Kravets, G. M. Lyakhov, et al. “Experimental Determination of the Blast-Wave Parameters and Viscoplastic Characteristics of Soils,” Prikl. Mekh. 13(7) 96–103 (1977).

    Google Scholar 

  20. A. A. Vovk, V. G. Kravets, G. M. Lyakhov, et al. [Sov. App. Mech. (Engl. Transl.) 13, 710–715 (1977)].

    Article  Google Scholar 

  21. K. S. Sultanov, Wave Theory of Seismic Resistance of Underground Structures (Fan Publ., Tashkent, 2016) [in Russian].

    Google Scholar 

  22. K. S. Sultanov, “Laws Governing the Interaction of Underground Structures with Soll During their Relative Displacement,” Prikl. Mekh. 29(3), 60–67 (1993)

    MathSciNet  Google Scholar 

  23. K. S. Sultanov, [Int. App. Mech. (Engl. Transl.) 29, 217–223 (1993).

    Article  Google Scholar 

  24. K. S. Sultanov and A. A. Bakhodirov, “Laws of Shear Interaction at Contact Surfaces Between Solid Bodies and Soil,” Osnov. Fund. Mekh. Grunt., No. 2, 5–10 (2016)

  25. K. S. Sultanov and A. A. Bakhodirov, [Soil Mech. Found. Engng (Engl. Transl.) 53 (2), 71–77 (2016).

    Article  Google Scholar 

  26. S. S. Grigorian, “Some Problems of the Mathematical Theory of Deformation and Fracture of Hard Rocks,” Prikl. Mat. Mekh. 31 (4), 643–669 (1967)

    Google Scholar 

  27. S. S. Grigorian, [J. Appl. Math. Mech. (Engl. Transl.) 31 (4), 665–686 (1967)].

    Article  Google Scholar 

  28. K. S. Sultanov, “A Non-Linear Law of the Deformation of Soft Soils,” Prikl. Mat. Mekh. 62(3), 503–511 (1998)

    Google Scholar 

  29. K. S. Sultanov, [J. Appl. Math. Mech. (Engl. Transl.) 62(3), 465–472 (1998)].

    Article  Google Scholar 

  30. K. S. Sultanov and B. E. Khusanov, “State Equations for Soils Prone to Slump-Type Settlement with Allowance for Degree of Wetting,” Osnov. Fund. Mekh. Grunt., No. 3, 7–11 (2001)

  31. K. S. Sultanov and B. E. Khusanov, [Soil Mech. Found. Engng (Engl. Transl.) 38 (3), 80–86 (2001).

    Article  Google Scholar 

  32. K. S. Sultanov and B. E. Khusanov, “Determination of the Slump-Type Settlement of a Nonlinearly Deformable Soil Mass During Wetting,” Osnov. Fund. Mekh. Grunt., No. 3, 2–4 (2002)

  33. K. S. Sultanov and B. E. Khusanov, [Soil Mech. Found. Engng (Engl. Transl.) 39(3), 81–84 (2002).

    Article  Google Scholar 

  34. V. N. Kukudzhanov, Computational Mechanics of Continua (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Sultanov.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2019, No. 4, pp. 76–93.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loginov, P.V., Salikhova, Z.R. & Sultanov, K.S. Experimental and Theoretical Method for Determining Mechanical Characteristics of Soils under Dynamic Loads. Mech. Solids 54, 915–928 (2019). https://doi.org/10.3103/S0025654419060074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419060074

Keywords

Navigation