Skip to main content
Log in

On Constructing Dynamic Equations Methods with Allowance for Atabilization of Constraints

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Based on the well-known methods of classical mechanics, the construction of dynamic equations for system using well-known constraint equations is associated with the accumulation of errors in the numerical solution and requires a certain modification to stabilize the constraints. The problem of constraint stabilization can be solved by changing the dynamic parameters of the system. It allows us to determine the Lagrange multipliers in the equations of motion and take into account possible deviations from the constraint equations. In systems with linear nonholonomic constraints, it is possible to express velocity projections in terms of the coordinate functions of the system. In this case, we can compose a system of second-order differential equations and present them in the form of Lagrange equations. Using the generalized Helmholtz conditions, one can compose the Lagrange equations with a dissipative function and ensure that the conditions for the stabilization of constraints are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Baumgarte, “Stabilization of Constraints and Integrals of Motion in Dynamical Systems,” Comp. Meth. App. Mech. Engng, No. 1, 1–16 (1972).

    Article  MathSciNet  Google Scholar 

  2. Sh. S. Nugmanova, “On Equations of Motion of Regulated Systems,” Trudy Kazan. Avia. Inst. 27, 26–35 (1953).

    Google Scholar 

  3. J. Wittenburg, Dynamics of Systems of Rigid Bodies (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  4. F. Amirouche, Fundamentals of Multibody Dynamics: Theory and Applications (Boston: Birkh. User., Boston, 2006).

    MATH  Google Scholar 

  5. A.A. Burov and I.I. Kosenko, The Lagrange differential-algebraic equations Prikl. Mat. Mekh. 78(6), 818–832 (2014) [J. App. Math. Mech. (Engl. Transl.) 78(6), 587-598 (2014)].

    MathSciNet  MATH  Google Scholar 

  6. R.A. Layton, Principles of Analytical System Dynamics (Springer, New York, 1998).

    Book  Google Scholar 

  7. P. Meisser, O. Enge, H. Freudenberg, and G. Kielau, “Electromechanical Interactions in Multibody Systems Containing Electromechanical Drives,” Mult. Sys. Dyn., 1, 281–302 (1997).

    Article  Google Scholar 

  8. F. Gonzales and J. Kovecses, “Use of Penalty Formulation in Dynamic Simulation and Analysis of Redundantly Constrained Multibody Systems,” Mult. Sys. Dyn. 29, 57–76 (2013).

    Article  MathSciNet  Google Scholar 

  9. U.M. Ascher, C. Hongsheng, L. R. Petzold, and S. Reich, “Stabilization of Constrained Mechanical Systems with DAEs and Invariant Manifolds,” J. Mech. Struct. Mach. 23, 135–158 (1995).

    Article  MathSciNet  Google Scholar 

  10. U. Ascher, H. Chin, and S. Reich, “Stabilization of DAEs and Invariant Manifolds,” Numer. Math. 67, 131–149 (1994).

    Article  MathSciNet  Google Scholar 

  11. U. Ascher, “Stabilization of Invariant of Discretized Differential Systems,” Num. Alg. 14(1), 1–24 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  12. S.-T Lin, J.-Nan. Huang, “Numerical Integration of Multibody Mechanical Systems using Baumgarte's Constraint Stabilization Method,” J. Chin. Inst. Eng. 25(2), 243–252 (2002).

    Article  MathSciNet  Google Scholar 

  13. M. G. Bertrand, “Theoreme Relatife au Mouvement d'un Point Attire Vers un Centre Fixe,” Comp. Rend. 77 (16), 849–853 (1873).

    MATH  Google Scholar 

  14. M. G. Darboux, “Recherche de la Loi que Dois Suivre une Force Centrale pour que la Trajectoire Quellle Determine Soit Toujour une Conique,” Comp. Rend. 76(16), 760–762 (1877).

    MATH  Google Scholar 

  15. V. G. Imshenetskiy, “Determination of a Force that Moves a Material Point Along a Conical Section as a Function of its Coordinates,” Soob. Khark. Mat. Obch. 1, 5–15 (1879).

    Google Scholar 

  16. G. K. Suslov, Determination of the Power Function from Given Particular Integrals (Kiev, 1890) [in Russian].

    Google Scholar 

  17. N. E. Zhukovsky, “Definition of the Force Function from a Given Family of trajectories,” in. Complete Works (Gl. Red. Aviats. Lit., Moscow, Leningrad, 1937), Vol. 1, pp. 293–308 [in Russian].

    Google Scholar 

  18. T. Levi-Civita and U. Amaldi, Lezioni di Meccanica Razionale, Vol. 2. (Zabiuchelli, Bologna, 1927; Izd. Inostr. Lit, Moscow, 1952).

  19. A. S. Galiullin, Methods of Solution of Inverse Problem of Dynamics (Nauka, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  20. G. Bozis and S. Ichtiaroglou, “Existence and Construction of Dynamical Systems Having a Prescribed Integral of Motion-an Inverse Problem,” Inver. Probl., No. 3, 213–227 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. S. Galiullin, G.G. Gafarov, R. P. Malaishka, and A.M. Khwan, Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems (UFN, Moscow, 1997) [in Russian].

    Google Scholar 

  22. N. P. Yerugin, “Construction of the Entire Set of Systems of Differential Equations Having a Given Integral Curve,” Prikl. Mat. Mekh. 21 (6) 659–670 (1952).

    Google Scholar 

  23. R. G. Mukharlyamov, “On the Construction of Differential Equations of Optimal Motion on the Given Manifold,” Dif. Ur. 7(10), 1825–1834 (1971).

    Google Scholar 

  24. R. G. Mukharlyamov, “On the Construction of the Set of Systems of Differential Equations of Stable Motion on an Integral Manifold,” Dif. Ur. 5(4), 688–699 (1969)

    Google Scholar 

  25. J. Llibre and R. Ramirez, Inverse Problems of Ordinary Differential Equations and Applications (Springer International Publishing Switzerland, 2016).

    Book  Google Scholar 

  26. R. G. Mukharlyamov, Differential-Algebraic Equations of Programmed Motions of Lagrangian Dynamical System,” Izv Ros. Akad. Nauk Mekh. Tv. Tela, No.4, 50–61 (2011) [Mech. Sol. (Engl. Transl.) 46(4), 534-543 (2011)].

    Google Scholar 

  27. R. G. Mukharlyamov, “Simulation of Control Processes, Stability and Stabilization of Systems with Program Constraints,” Izv. Ros. Akad. Nauk. Teor. Sis. Upr., No. 1, 15–28 (2015) [J. Comput. Syst. Sci. Int. (Engl. Transl.) 54(1), 13-26 (2015)]

    MathSciNet  MATH  Google Scholar 

  28. H. Helmholtz, “Uber die Physikalische Bedeutung des Prinicips der Kleinsten Wirkung,” J. Rein. Ang. Math., No. 100, 137–166 (1887).

    MathSciNet  MATH  Google Scholar 

  29. G. K. Suslov, “On the Kinetic Potential of Helmholtz,” Mat. Sborn. 19(1), 197–210 (1896).

    Google Scholar 

  30. A. Mayer, Die Existenbedingungen eines Kinetischen Potentials (Berl. Ges. Wiss., Leipzig, 1896).

    Google Scholar 

  31. G. Kielau, P. Maisser, “A Generalization of the Helmholtz Conditions for the Existence of a First-Order Lagrangian,” Z. Angew. Math. Mech. 86(9), 722–735 (2006).

    Article  MathSciNet  Google Scholar 

  32. Yu. I. Neimark and N.A. Fufaev, Dynamics of Nonholonomic Systems (pmNauka, Moscow}, 1967) [in Russian].

    MATH  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the RFBR (project 19-08-00261 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Kaspirovich.

Additional information

Russian Text © Author(s), 2019, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2019, No. 3, pp. 124-135.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaspirovich, I.E., Mukharlyamov, R.G. On Constructing Dynamic Equations Methods with Allowance for Atabilization of Constraints. Mech. Solids 54, 589–597 (2019). https://doi.org/10.3103/S0025654419040137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419040137

Keywords

Navigation