Skip to main content
Log in

Motion of a rigid bar in a rigid-viscoplastic medium: The influence of the model type on the solution behavior

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The paper deals with rigid-plastic materials satisfying the vonMises plasticity condition under the assumption that their yield point in pure shear depends only on the equivalent strain rate (rigid-viscoplastic material models). The rigid-viscoplastic models are classified by the yield point behavior in pure shear as the equivalent strain rate tends to zero or infinity. All in all, four classes of rigid-viscoplastic material models are distinguished. For each of these classes of material models, the solution is constructed for the translational motion of an axisymmetric rigid bar along its symmetry axis in a rigid-plastic medium. It is assumed that the maximum friction law acts on the surface of contact between the bar and the rigid-viscoplastic medium. It is shown that the solutions provided by models of different classes qualitatively differ from each other. A qualitative comparison with experimental results known in the literature is carried out. It is shown that predicting the formation of an intensive plastic deformation layer near the friction surface, which is observed in experiments, is possible if the rigid-viscoplastic model contains the saturation stress (the stress, bounded in magnitude, to which the yield point in pure shear tends as the equivalent strain rate tends to infinity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Il’yushin, “To the Problem of Viscoplastic Flow of a Material,” in Collective Works, Vol. 1 (1935–1945) (Fizmatlit, Moscow, 2004), pp. 115–131 [in Russian].

    Google Scholar 

  2. P. P. Mosolov and V. P. Myasnikov, Mechanics of RigidplasticMedia (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  3. N. N. Malinin, Creep inMetal Working (Mashinostroenie, Moscow, 1986) [in Russian].

    Google Scholar 

  4. V. Sanabria, S. Mueller, S. Gall, and W. Reimers, “Investigation of Friction Boundary Conditions during Extrusion of Aluminium and Magnesium Alloys,” Key Engng Mater. 611–612, 997–1004 (2014).

    Article  Google Scholar 

  5. B. J. Griffiths, “Mechanism of White Layer Generation with Reference to Machining and Deformation Processes,” Trans ASME. J. Trib. 109, 525–530 (1987).

    Article  Google Scholar 

  6. T. Murai, S. Matsuoka, S. Miyamoto, and Y. Oki, “Effects of Extrusion Conditions on Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Extrusion,” J. Mater. Process. Technol. 141, 207–212 (2003).

    Article  Google Scholar 

  7. A. A. Milenin, S. Berski, G. Banaszek, and H. Dyja, “Theoretical Analysis and Optimization of Parameters in Extrusion Process of Explosive Cladded Bimetallic Rods,” J. Mater. Process. Technol. 157–158, 208–212 (2004).

    Article  Google Scholar 

  8. S. Kajino and M. Asakawa, “Effect of “Additional Shear Strain Layer” on Tensile Strength and Miscostructure of Fine DrawnWire,” J. Mater. Process. Technol. 177, 704–708 (2006).

    Article  Google Scholar 

  9. T. A. Trunina and E. A. Kokovikhin, “Formation of Highly Dispersed Structure in Surface Layers of Steel under Combined Treatment with Hydraulic Forging,” Probl. Mashinostr. Nadezhn. Mashin., No. 2, 71–74 (2008).

    Google Scholar 

  10. S. E. Aleksandrov, D. Z. Grabko, and O. A. Shikimakha, “To the Determination of Intensive Strain Layer Thickness near the Friction Surface in Metal Forming Processes,” Probl. Mashinostr. Nadezhn. Mashin., No. 3, 72–78 (2009).

    Google Scholar 

  11. T. T. Sasaki, R. A. Morris, G. B. Thompson, et al., “Formation of Ultra-Fine Copper Grains in Copper-Clad Aluminum Wire,” ScriptaMater. 63, 488–491 (2010).

    Google Scholar 

  12. M. Thirumurugan, S. A. Rao, S. Kumaran, and T. S. Rao, “Improved Ductility in ZM21 Magnesium–Aluminium Macrocomposite Produced by Co-Extrusion,” J. Mater. Process. Technol. 211, 1637–1642 (2011).

    Article  Google Scholar 

  13. X. Li, G. Zu, M. Ding, et al., “Interfacial Microstructure and Mechanical Properties of Cu/Al Clad Sheet Fabricated by Asymmetrical Roll Bonding and Annealing,” Mater. Sci. Technol. 529A, 485–491 (2011).

    Google Scholar 

  14. R. V. Goldstein and S. E. Aleksandrov, “An Approach to the Prediction ofMaterialMicrostructure Formation near the Friction Surface under Developed Strains,” Fiz. Mezomekh. 17 (5), 15–20 (2014).

    Google Scholar 

  15. S. E. Aleksandrov and R. V. Goldstein, “On Constructing Constitutive Equations in Material Thin Layer near Friction Surfaces in Material Forming Processes,” Dokl. Ross. Akad. Nauk 460 (3), 283–285 (2015) [Dokl. Phys. (Engl. Transl.) 60 (1), 9–41 (2015)].

    Google Scholar 

  16. S. Alexandrov and O. Richmond, “Singular Plastic Flow Fields near Surfaces ofMaximum Friction Stress,” Int. J. Non-Lin. Mech. 36 (1), 1–11 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Gurung, “1-D Analytic Solution for Extensible and Inextensible Soil/Rock Reinforcement in Pull-out Tests,” Geotext. Geomembr. 19, 195–212 (2001).

    Article  Google Scholar 

  18. B. Banhoilzer, W. Brumeshuber, and W. Jung, “Analytical Simulation of Pull-Out Tests — the Direct Problem,” Cement & Concr. Compos. 27, 93–101 (2005).

    Article  Google Scholar 

  19. B. Banhoilzer, W. Brumeshuber, and W. Jung, “Analytical Evaluation of Pull-Out Tests — the Inverse Problem,” Cement & Concr. Compos. 28, 564–571 (2006).

    Article  Google Scholar 

  20. L. Bouazaoui and A. Li, “Analysis of Steel/Concrete Interfacial Shear Stress by Means of Pull-Out Test,” Int. J. Adhesion & Adhesives 28, 101–108 (2008).

    Article  Google Scholar 

  21. L. B. Martin, M. Tijani, and F. Hadj-Hassen, “ANew Analytical Solution to theMechanical Behavior of Fully Grouted Rockbolts Subjected to Pull-Out Tests,” Construct. Build. Mater. 25, 749–755 (2011).

    Article  Google Scholar 

  22. S. E. Aleksandrov and R. V. Goldstein, “Pull-Out of a Rigid Fibre from an ElastoplasticMatrix,” Prikl. Mat. Mekh. 64 (1), 160–166 (2000) [J. Appl. Math. Mech. (Engl. Transl.) 64 (1), 155–161 (2000)].

    MATH  Google Scholar 

  23. J. G. Oldroyd, “Non-Newtonian Flow of Liquids and Solids,” in Rheology: Theory and Applications, Ed. by F. R. Eirich, Vol. 1 (Academic Press, New York, 1956), pp. 653–682.

    Google Scholar 

  24. J. M. Dealy and K. F. Wissbrun, Melt Rheology and Its Role in Plastic Processing (Van Nostrand Reinhold, New York, 1990).

    Book  Google Scholar 

  25. E. Mitsoulis and S. G. Hatzikiriakos, “Capillary Extrusion Flow of a Fluropolymer Melt,” Int. J. Mater. Form. 6, 29–40 (2013).

    Article  Google Scholar 

  26. S. A. Shesterikov and M. A. Yumasheva, “Specification of Equation of State in Creep Theory,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 86–91 (1984) [Mech. Solids. (Engl. Transl.)].

    Google Scholar 

  27. S. E. Aleksandrov, V. L. Danilov, and N. N. Chikanova, “On the Stagnation Zone in a Simulation of Axisymmetric Pressure Metal Forming under Creep,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 149–151 (2000) [Mech. Solids (Engl. Transl.) 35 (1), 127–129 (2000)].

    Google Scholar 

  28. S. Alexandrov and N. Alexandrova, “On the Maximum Friction Law in Viscoplasticity,” Mech. Time- Depend. Mater. 4 (1), 99–104 (2000)

    Article  ADS  Google Scholar 

  29. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Aleksandrov.

Additional information

Original Russian Text © S.E. Aleksandrov, R.V. Goldstein, 2015, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2015, No. 4, pp. 28–37.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, S.E., Goldstein, R.V. Motion of a rigid bar in a rigid-viscoplastic medium: The influence of the model type on the solution behavior. Mech. Solids 50, 389–396 (2015). https://doi.org/10.3103/S0025654415040044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654415040044

Keywords

Navigation