Skip to main content
Log in

Dynamic properties of zirconium alloy E110 under shock-wave loading of submicrosecond duration

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The results of stress wave measurements under shock-wave loading of specimens of zirconium alloy W110 of thickness from 0.5 to 8 mm at normal and elevated temperatures are presented. The duration of shock loading pulses varied from ∼0.05 to 1 µs with amplitude from 3.4 to 23 GPa. The free surface velocity profiles were registered by interferometric velocimeters VISAR and PDV with nanosecond time resolution. The results of measurement of the elastic precursor decay were used to determine the plastic strain rate behind its front, which decreases from 106 s−1 at a distance of 0.46 mm to 2 × 104 s−1 at a distance of 8 mm in the course of propagation. The spall strength values at normal and elevated temperatures were obtained, and its dependencies on the strain rate in the range from 105 to 106 s−1 were constructed. The three-wave configuration of the shock wave caused by the polymorphic transformation as α → ω was registered under a shock compression pressure of 10.6 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Kanel, V. E. Fortov, and S. V. Razorenov, “Shock Waves in Condensed-State Physics,” Uspekhi Fiz. Nauk 177(8), 809–830 (2007) [Phys. Uspekhi (Engl. Transl.) 50 (8), 771–791 (2007)].

    Article  Google Scholar 

  2. E. N. Avrorin, B. K. Vodolaga, V. A. Simonenko, and V. E. Fortov, “Intense Shock Waves and Extreme States of Matter,” Uspekhi Fiz. Nauk 163(5), 1–34 (1993) [Phys. Uspekhi (Engl. Transl.) 36 (5), 337–364 (1993)].

    Article  Google Scholar 

  3. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  4. G. I. Kanel, “Distortion of the Wave Profiles in an Elastoplastic Body upon Spalling,” Zh. Prikl. Mekh. Tekhn. Fiz. 42(2), 194–198 (2001) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 42 (2), 358–362 (2001)].

    MATH  Google Scholar 

  5. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Experimental Profiles of Shock Waves in Condensed Matters (FIZMATLIT, Moscow, 2008) [in Russian].

    Google Scholar 

  6. E. B. Zaretsky and G. I. Kanel, “Plastic Flow in Shock-Loaded Silver at Strain Rates from 104s−1 to 107s−1 and Temperatures from 296K to 1233 K,” J. Appl. Phys. 110(7), 073502 (2011).

    Article  ADS  Google Scholar 

  7. E. B. Zaretsky and G. I. Kanel, “Effect of Temperature, Strain, and Strain Rate on the Flow Stress of Aluminum under Shock-Wave Compression,” J. Appl. Phys. 112(7), 073504 (2012).

    Article  ADS  Google Scholar 

  8. E. B. Zaretsky and G. I. Kanel, “Response of Copper to Shock-Wave Loading at Temperatures up to the Melting Point,” J. Appl. Phys. 114(8), 083511 (2013).

    Article  ADS  Google Scholar 

  9. E. B. Zaretsky and G. I. Kanel, “Tantalum and Vanadium Response to Shock-Wave Loading at Normal and Elevated Temperatures. Non-Monotonous Decay of the Elastic Wave in Vanadium,” J. Appl. Phys. 115(24), 243502 (2014).

    Article  ADS  Google Scholar 

  10. M. V. Zhernokletov, V. N. Zubarev, R. F. Trunin, and V. E. Fortov, Experimental Data on Shock Compressibility and Adiabatic Extension of Condensed Matters at High Energy Densities (VNIIEF, Chernogolovka, 1996) [in Russian].

    Google Scholar 

  11. A. V. Pavlenko, S. I. Balabin, O. E. Kozelkov, and D.N. Kazakov, “AOne-Stage Light-Gas Gun for Studying Dynamic Properties of Structural Materials in a Range up to 40 GPa,” Pribory Tekhn. Experim., No. 4, 122–125 (2013) [Instrum. Experim. Tech. (Engl. Transl.) 56 (4), 482–484 (2013)].

    Google Scholar 

  12. A. V. Pavlenko, S. N. Malyugina, V. V. Pereshitov, and I. N. Lisitsina, “A Visar Two-Channel Laser Interferometric Complex for Studying Properties of Materials under Shock-Wave Loading,” Pribory Tekhn. Experim., No. 2, 127–129 (2013) [Instrum. Experim. Tech. (Engl. Transl.) 56 (2), 240–241 (2013)].

    Google Scholar 

  13. S. S. Mokrushin, N. A. Anikin, S. N. Malyugina, et al., “An Interferometer with Time-and-Frequency Signal Compression for Studying Properties of Materials in Shock Wave Experiments,” Pribory Tekhn. Experim., No. 4, 107–110 (2014) [Instrum. Experim. Tech. (Engl. Transl.) 57 (4), 475–478 (2014)].

    Google Scholar 

  14. G. V. Garkushin, G. I. Kanel, and S. V. Razorenov, “High Strain Rate Deformation and Fracture of the Magnesium Alloy Ma2-1 under Shock Wave Loading,” Fiz. Tverd. Tela 54(5), 1012–1018 (2012) [Phys. Solid State (Engl. Transl.) 54 (5), 1079–1085 (2012)].

    Google Scholar 

  15. S. V. Razorenov, G. I. Kanel, G. V. Garkushin, and O. N. Ignatova, “Resistance to Dynamic Deformation and Fracture of Tantalum with Different Grain and Defect Structures,” Fiz. Tverd. Tela 54(4), 742–749 (2012) [Phys. Soled State (Engl. Transl.) 54 (4), 790–797 (2012)].

    Google Scholar 

  16. G. E. Duvall, “Propagation of Shock Waves in a Stress-Relaxing Medium,” in Stress Waves in Anelastic Solids, Ed. by H. Kolsky and W. Prager (Springer, Berlin, 1964).

    Google Scholar 

  17. P. A. Rigg, C. W. Greeff, M. D. Knudson, and G. T. Gray III, “Influence of Impurities on the Solid-Solid Phase Transition in Zirconium,” in Proc. Int. Conf. of American Institute of Physics. Shock Compression of Condensed Matter (2009), pp. 1171–1174.

    Google Scholar 

  18. M. W. Guinan and D. J. Steinberg, “Pressure and Temperature Derivatives of the Isotropic Polycrystalline Shear Modulus for 65 Elements,” J. Phys. Chem. Solids 35, 1501–1512 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Kazakov.

Additional information

Original Russian Text © D.N. Kazakov, O.E. Kozelkov, A.S. Maiorova, S.N. Malyugina, S.S. Mokrushin, A.V. Pavlenko, 2014, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2014, No. 6, pp. 68–77.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, D.N., Kozelkov, O.E., Maiorova, A.S. et al. Dynamic properties of zirconium alloy E110 under shock-wave loading of submicrosecond duration. Mech. Solids 49, 657–665 (2014). https://doi.org/10.3103/S0025654414060077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654414060077

Keywords

Navigation