Skip to main content
Log in

Dynamic shear and tensile strength of iron: Continual and atomistic simulation

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In this paper, continual and atomistic simulations are used to investigate the shear and spall strength of iron under high-rate strain conditions. The continual simulation is based on the use of models of dislocation plasticity and fracture due to formation and growth of microcracks and cavities; the molecular-dynamic simulation is based on the use of the LAMMPS software. The obtained results are analyzed in the light of experimental data for the high-speed impact and irradiation of iron films by ultrashort pulses of intense laser radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, “Dynamic Yield and Tensile Strength of Aluminum Single Crystals at Temperatures up to the Melting Point,” J. Appl. Phys. 90(1), 136–143 (2001).

    Article  ADS  Google Scholar 

  2. G. I. Kanel, V. E. Fortov, and S. V. Razorenov, “Shock Waves in Condensed-State Physics,” Uspekhi Fiz. Nauk 177(8), 809–830 (2007) [Phys. Uspekhi (Engl. Transl.) 50 (8), 771–791 (2007)].

    Article  Google Scholar 

  3. G. V. Garkushin, O. N. Ignatova, G. I. Kanel, et al., “Submicrosecond Strength of Ultrafine-Grained Materials,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 155–163 (2010) [Mech. Solids (Engl. Transl.) 45 (4), 624–632 (2010)].

    Google Scholar 

  4. E. B. Zaretsky and G. I. Kanel, “Response of Copper to Shock-Wave Loading at Temperatures up to the Melting Point,” J. Appl. Phys. 114, 083511 (2013).

    Article  ADS  Google Scholar 

  5. S. I. Ashitkov, M. B. Agranat, G. I. Kanel, et al., “Behavior of Aluminum near an Ultimate Theoretical Strength in Experiments with Femtosecond Laser Pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 92(8), 568–573 (2010) [JETP Lett. (Engl. Transl.) 92 (8), 516–520 (2010)].

    Google Scholar 

  6. S. I. Ashitkov, P. S. Komarov, M. B. Agranat, et al., “Achievement of Ultimate Values of the Bulk and Shear Strengths of Iron Irradiated by Femtosecond Laser Pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 98(7), 439–444 (2013) [JETP Lett. (Engl. Transl.) 98 (7), 384–388 (2013)].

    Google Scholar 

  7. R. F. Smith, J. H. Eggert, R. E. Rudd, et al., “High Strain-Rate Plastic Flow in Al and Fe,” J. Appl. Phys. 110, 123515 (2011).

    Article  ADS  Google Scholar 

  8. V. H. Whitley, S. D. MaGrane, D. E. Eakins, et al., “The Elastic-Plastic Response of Aluminum Films to Ultrafast Laser-Generated Shocks,” J. Appl. Phys. 109, 013505 (2011).

    Article  ADS  Google Scholar 

  9. Y. M. Gupta, J. M. Winey, P. B. Trivedi, et al., “Large Elastic Wave Amplitude and Attenuation in Shocked Pure Aluminum,” J. Appl. Phys. 105(3), 036107 (2009).

    Article  ADS  Google Scholar 

  10. J.M. Winey, B.M. LaLone, P. B. Trivedi, and Y.M. Gupta, “Elastic Wave Amplitudes in Shock-Compressed Thin Polycrystalline Aluminum Samples,” J. Appl. Phys. 106(7), 073508 (2009).

    Article  ADS  Google Scholar 

  11. G. I. Kanel, S. V. Razorenov, G. V. Garkushin, et al., “Deformation Resistance and Fracture of Iron over a Wide Strain Rate Range,” Fiz. Tverd. Tela 56(8), 1518–1522 (2014) [Phys. Solid State (Engl. Transl.) 56 (8), 1569–1573 (2014)].

    Google Scholar 

  12. V. S. Krasnikov, A. E. Mayer, and A. P. Yalovets, “Dislocation Based High-Rate Plasticity Model and Its Application to Plate-Impact and Ultra Short Electron Irradiation Simulations,” Int. J. Plast. 27(5), 1294–1308 (2011).

    Article  MATH  Google Scholar 

  13. A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, “Modeling of Plasticity and Fracture of Metals at Shock Loading,” J. Appl. Phys. 113(19), 193508 (2013).

    Article  ADS  Google Scholar 

  14. A. E. Mayer, “Dynamic Fracture of Metals in Wide Range of Strain Rates,” in Proc. 13th Int. Conf. on Fracture, Beijing, China, 2013, Paper #S12-012. URL: http://www.gruppofrattura.it/ocs/index.php/ICF/icf13/paper/view/11146/10525.

  15. A. E. Mayer, P. N. Mayer, and V. S. Krasnikov, “Dynamic Fracture of Metals in Solid and Liquid States under Ultra-Short Intensive Electron or Laser Irradiation,” Procedia Mater. Sci. 3C, 1890–1895 (2014).

    Article  Google Scholar 

  16. LAMMPS Molecular Dynamics Simulator. URL: http://lammps.sandia.gov.

  17. V. E. Fortov, K. V. Khishchenko, P. R. Levashov, and I. V. Lomonosov, “Wide-Range Multi-Phase Equations of State for Metals,” Nucl. Instrum. Methods Phys. Res. A 415, 604–608 (1998).

    Article  ADS  Google Scholar 

  18. A.M. Kosevich, “Dynamical Theory of Dislocations,” Uspekhi Fiz. Nauk 84(4), 579–609 (1964) [Sov. Phys. Uspekhi (Engl. Transl.) 7 (6), 837–854 (1965)].

    Article  Google Scholar 

  19. A. P. Yalovets, “Calculation of Flows of a Medium Induced by High-Power Beams of Charged Particles,” Zh. Prikl. Mekh. Tekhn. Fiz. 38(1), 151–166 (1997) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 38 (1), 137–150 (1997)].

    MATH  Google Scholar 

  20. R. F. Smith, J. H. Eggert, R. E. Rudd, et al., “High Strain-Rate Plastic Flow in Al and Fe,” J. Appl. Phys. 110, 123515 (2011).

    Article  ADS  Google Scholar 

  21. M. S. Daw and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B 29(12), 6443 (1984).

    Article  ADS  Google Scholar 

  22. G. J. Ackland, D. J. Bacon, A. F. Calder, and T. Harry, “Computer Simulation of Point Defect Properties in Dilute Fe-Cu Alloy Using a Many-Body Interatomic Potential,” Phil. Mag. A 75(3), 713–732 (1997).

    Article  ADS  Google Scholar 

  23. M. I. Mendelev, S. Han, D. J. Srolovitz, et al., “Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron,” Phil. Mag. A 83(35), 3977–3994 (2003).

    Article  Google Scholar 

  24. G. E. Norman and A. V. Yanilkin, “Homogeneous Nucleation of Dislocations,” Fiz. Tverd. Tela 53(8), 1536–1541 (2011) [Phys. Solid State (Engl. Transl.) 53 (8), 1614–1619 (2011)].

    Google Scholar 

  25. A. E. Mayer, Dynamic Processes and Structure Transformations in Metals under Radiation by Intense Flows of Charged Particles, Doctoral Dissertation in Physics and Mathematics (ChelGU, Chelyabinsk, 2011) [in Russian].

    Google Scholar 

  26. R. Komanduria, N. Chandrasekaran, and L. M. Raff, “Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel,” Int. J. Mech. Sci. 43, 2237–2260 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Mayer.

Additional information

Original Russian Text © A.E. Mayer, 2014, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2014, No. 6, pp. 58–67.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, A.E. Dynamic shear and tensile strength of iron: Continual and atomistic simulation. Mech. Solids 49, 649–656 (2014). https://doi.org/10.3103/S0025654414060065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654414060065

Keywords

Navigation