Skip to main content
Log in

Study of possible void nucleation and growth in solids in the framework of the Davis-Nadai deformation theory

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2014

Abstract

In the framework of the Davis-Nadai deformation theory, we study the problem of a ball with a central cavity subjected to internal and external pressure. The solution is constructed in the reference configuration for the polynomial material deformation law with possible regard to matter conservation inside the cavity. The obtained solution is analyzed; it is mathematically proved that the limit load exists in the case of uniform compression, and a method for determining this load is given. It is also proved that a new void can be formed in a solid ball in the case of its extension, and the critical load of void formation is estimated. It is shown that the already existing spherical void cannot completely disappear under the action of external pressure (assuming that its shape is preserved and remaining in the framework of the continuity hypothesis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Il’yushin, Plasticity, Part 1: Elastoplastic Deformations (OGIZ, Moscow-Leningrad, 1948) [in Russian].

    Google Scholar 

  2. V. I. Betekhtin, S. Yu. Veselkov, Yu. M. Dal’, et al., “Theoretical and Experimental Investigation of the Effect of an Applied Load on Pores in Solids,” Fiz. Tverd. Tela 45(4), 618–624 (2003) [Phys. Solid State (Engl. Transl.) 45 (4), 649–655 (2003)].

    Google Scholar 

  3. A. S. Grigoriev, On the Theory and Problems of Shell Equilibrium under Large Deformations,” Izv. Akad. Nauk SSSR.Mekh. Tverd. Tela, No. 1, 163–168 (1970) [Mech. Solids (Engl. Transl.)].

    Google Scholar 

  4. E. P. Kolpak, Stability of Membrane Shells under Large Strains (Izd-vo SPbGU, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  5. S. A. Kabrits, E. I. Mukhailovskii, P. E. Tovstik, et al., General Nonlinear Theory of Elastic Shells (Izd-vo SPbGU, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  6. A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  7. J. M. Ball, “Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity,” Phil. Trans. Roy. Soc. London. Ser. A:Math. Phys. Sci. 306(1496), 557–611 (1982).

    Article  ADS  MATH  Google Scholar 

  8. S. A. Stuart, “Radially Symmetric Cavitation for Hyperelastic Materials,” Ann. Inst. Henry Poincare — Anal. Nonlin. 2, 33–66 (1985).

    MATH  MathSciNet  Google Scholar 

  9. C. O. Horgan and R. Abeyaratne, “A Bifurcation Problem for Compressible Nonlinearly Elastic Medium: Growth of a Micro-Void,” J. Elasticity 16, 189–200 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Sivaloganathan, “Uniqueness of Regular and Singular Equilibria for Spherically Symmetric Problems of Nonlinear Elasticity,” Arch. Rat. Mech. Anal. 96(2), 97–136 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  11. M.-S. Chou-Wang and C. O. Horgan, “Void Nucleation and Growth for a Class of Incompressible Nonlinearly Elastic Materials,” Int. J. Solids Struct. 25, 1239–1254 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Hao, “A Theory of the Appearance and Growth of the Micro-Spherical Void,” Int. J. Fract. 43, 51–55 (1990).

    Article  Google Scholar 

  13. F. Meynard, “Existence and Non-Existence Results on the Radially Symmetric Cavitation Problem,” Quart. Appl.Math. 50, 210–226 (1992).

    MathSciNet  Google Scholar 

  14. C. O. Horgan, “Void Nucleation and Growth for CompressibleNon-Linearly Elastic Material: An Example,” Int. J. Solids Struct. 29(3), 279–291 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  15. H.-S. Hou and R. Abeyaratne, “Cavitation in Elastic and Elastic-Plastic Solids,” J. Mech. Phys. Solids 40(3), 571–592 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. X.-C. Shang and C.-J. Cheng, “Exact Solutions for Cavitated Bifurcation for Compressible Hyperelastic Materials,” Int. J. Engng Sci. 39, 1101–1117 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Diani, “Irreversible Growth of a Spherical Cavity in Rubber-Like Material: A Fracture Mechanics Description,” Int. J. Fract. 112, 151–161 (2001).

    Article  Google Scholar 

  18. J.-S. Ren and C.-J. Cheng, “Bifurcation of Cavitation Solutions for Incompressible Transversely Isotropic Hyperelastic Materials,” J. Engng Math. 44, 245–257 (2002).

    Article  MathSciNet  Google Scholar 

  19. I. A. Brigadnov, “The Dual Approach to the Evaluation of the Load-Carrying Capacity of Nonlinearly Elastic Bodies,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 39–46 (2004) [Mech. Solids (Engl. Transl.) 39 (2), 30–35 (2004)].

    Google Scholar 

  20. E. Davis, “Stress Growth with Strain Variation and “Stress-Strain” Dependence in Plastic Region for Copper in Complex Stress State,” in Theory of Plasticity, Ed. by Yu. N. Rabotnov (Izd-vo Inostr. Liter., Moscow, 1948) [in Russian].

    Google Scholar 

  21. A. Nadai, Theory of Flow and Fracture of Solids, Vol. 1 (NewYork-Toronto-London, 1950; Izd-vo Inostr. Liter., Moscow, 1954).

    Google Scholar 

  22. R. Hill, The Mathematical Theory of Plasticity (Clarendon, Oxford, 1950; Gostekhizdat, Moscow, 1956).

    MATH  Google Scholar 

  23. R. F. Bishop, R. Hill, and N. F. Mott, “The Theory of Indentation and Hardness Tests,” Proc. Phys. Soc. 57, 147–159 (1945).

    Article  ADS  Google Scholar 

  24. F. A. McClintock, “A Criterion for a Ductile Fracture by the Growth of Holes,” J. Appl. Mech. (Trans. ASME. Ser. E) 35(2), 363–371 (1968).

    Article  ADS  Google Scholar 

  25. J. R. Rice and D.M. Tracey, “On the Ductile Enlargement of Voids in Triaxial Stress Fields,” J.Mech. Phys. Solids 17(3), 201–217 (1969).

    Article  ADS  Google Scholar 

  26. Y. Huang, J. W. Hutchinson, and V. Tvergaard, “Cavitation Instabilities in Elastic-Plastic Solids,” J. Mech. Phys. Solids 39, 223–242 (1991).

    Article  ADS  Google Scholar 

  27. V. Tvergaard, Y. Huang, and J.W. Hutchinson, “Cavitation Instabilities in a Power Hardening Elastic-Plastic Solids,” Europ. J.Mech. Ser. A: Solids 11(2), 215–231 (1992).

    Google Scholar 

  28. Yu.M. Dal’ and Yu. G. Pronina, “Deformation of Spherical Pore in Nonlinear-Elastic Solid,” Izv. Ross. Akad. Nauk. Ser. Fiz. 70(9), 1341–1343 (2006) [Bull. Russ. Acad. Sci. Phys. (Engl. Transl.) 70 (9), 1533–1535 (2006)].

    Google Scholar 

  29. Yu. M. Dal’ and Yu. G. Pronina, “Void Growth and Healing in Elastic-Plastic Body under the Action of Hydrostatic Pressure,” Electronic Journal “Investigated in Russia” 9, 1387–1394 (2006). URL: http://zhurnal.ape.relarn.ru/articles/2006/148.pdf.

    Google Scholar 

  30. A. A. Morshchinina, “Nonlinear Axisymmetric Elasticity Problem for a Hollow Sphere,” Vestnik S.-Peterburg. Univ. Mat. Mekh. Astr., No. 4, 84–88 (2009).

    Google Scholar 

  31. V. I. Betekhtin, A. M. Glezer, A. G. Kadomtsev, et al., “Excess Free Volume and Mechanical Properties of Amorphous Alloys,” Fiz. Tverd. Tela 40(1), 85–89 (1998) [Sov. Phys. Solid State (Engl. Transl.) 40 (1), 74–78 (1998)].

    Google Scholar 

  32. V. I. Smirnov, Course of Higher Mathematics (Gostekhizdat, Moscow-Leningrad, 1951) [in Russian].

    Google Scholar 

  33. A. A. Il’yushin, Plasticity. Foundations of General Mathematical Theory (Izd-vo AN SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  34. A. N. Gent and P. B. Lindey, “Internal Rupture of Bounded Rubber Cylinders in Tension,” Proc. Roy. Soc. London. Ser. A 249, 195–205 (1958).

    Article  ADS  Google Scholar 

  35. A. A. Gruzdkov, N. F. Morozov, and Yu. V. Petrov, “Equal Power Principle in Multilevel Dynamic Fracture of Solids,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 167–172 (2006) [Mech. Solids (Engl. Transl.) 41 (6), 135–139 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Pronina.

Additional information

Original Russian Text © Yu.G. Pronina, 2014, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2014, No. 3, pp. 79–92.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronina, Y.G. Study of possible void nucleation and growth in solids in the framework of the Davis-Nadai deformation theory. Mech. Solids 49, 302–313 (2014). https://doi.org/10.3103/S0025654414030066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654414030066

Keywords

Navigation