Skip to main content
Log in

Structural and Functional Modeling of Processes with a Dedicated Control Subject

  • INFORMATION SYSTEMS
  • Published:
Automatic Documentation and Mathematical Linguistics Aims and scope

Abstract

The efficiency of informational support depends on the speed and quality of making management decisions, as well as their relevance and adaptability to changing conditions, which determine the efficiency of the functioning of production systems. The paper considers the development of artifacts to represent structural and functional models of organizational systems described by the set of interacting processes and subprocesses functioning under uncertainty. The creation of a new system of artifacts is caused by the necessity to distinguish the subject of management in an explicit form combining discrete and continuous processes within the framework of one model, as well as determining the efficiency of the obtained models. The eEPC, BPMN, and IDEF methodology of structural modeling served as a basis for this development. The use of the proposed system of artifacts is shown using the example of managing the product portfolio of production systems operating on a free market. The presented form of representation allows one to structure the running processes and investigate their efficiency by the methods of simulation modeling and statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Markowitz, H.M., Portfolio selection, J. Finance, 1952, vol. 7, no. 1, pp. 77–91.

    Google Scholar 

  2. Sharpe, W.F., Capital asset prices: a theory of market equilibrium under conditions of risk, J. Finance, 1964, vol. 19, no. 3, pp. 425–442.  https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

    Article  Google Scholar 

  3. Lintner, J., The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, Rev. Econ. Stat., 1965, vol. 47, no. 1, pp. 13–37.

    Article  Google Scholar 

  4. Mossin, J., Equilibrium in a capital asset market, Econometrica, 1966, vol. 34, no. 4, p. 768.

    Article  Google Scholar 

  5. Black, F. and Litterman, R., Global portfolio optimization, Financial Analysts J., 1992, vol. 48, no. 5, pp. 28–43. https://doi.org/10.2469/faj.v48.n5.28

    Article  Google Scholar 

  6. Olson, D.L., Supply Chain Information Technology, New York: Business Expert Press, 2014.

    Google Scholar 

  7. Zou, X., Yang, Q., and Wang, Q., Analysing the risk propagation in the project portfolio network using the sirf model, proceedings of the 10th international conference on operations research and enterprise systems, Proc. 10th Int. Conf. on Operations Research and Enterprise Systems—ICORES, 2021, pp. 226–232.  https://doi.org/10.5220/0010288102260232

  8. Ghasemi, F., Sari, M.H.M., Yousefi, V., Falsafi, R., and Tamošaitienė, J., Project portfolio risk identification and analysis, considering project risk interactions and using bayesian networks, Sustainability, 2018, vol. 10, no. 5, p. 1609.  https://doi.org/10.3390/su10051609

    Article  Google Scholar 

  9. Young, M. and Conboy, K., Contemporary project portfolio management: reflections on the development of an australian competency standard for project portfolio management, Int. J. Proj. Manage., 2013, vol. 31, no. 8, pp. 1089–1100.  https://doi.org/10.1016/j.ijproman.2013.03.005

    Article  Google Scholar 

  10. Nabati, M.M. and Ashrafi, M., Modeling projects interdependencies to measure their synergic impacts on a project portfolio, J. Proj. Manage., 2021, vol. 6, no. 3, pp. 143–156.  https://doi.org/10.5267/j.jpm.2021.2.003

    Article  Google Scholar 

  11. Danesh, D., Ryan, M.J., and Abbasi, A., Using analytic hierarchy process as a decision-making tool in project portfolio management, Int. J. Econ. Manage. Eng., 2015, vol. 9, no. 12, pp. 4194–4204.  https://doi.org/10.5281/zenodo.1110373

    Article  Google Scholar 

  12. Neumeier, A., Radszuwill, S., and Garizy, T.Z., Modeling project criticality in it project portfolios, Int. J. Proj. Manage., 2018, vol. 36, no. 6, pp. 833–844.  https://doi.org/10.1016/j.ijproman.2018.04.005

    Article  Google Scholar 

  13. Tirole, J., The Theory of Industrial Organization, Cambridge, Mass.: MIT Press, 1988.

    Google Scholar 

  14. Mezhov, S. and Mylnikov, L., Specifics of project management on industrial innovation, Proc. Int. Conf. Appl. Innovation IT, 2018, vol. 6, no. 1, pp. 103–108.  https://doi.org/10.13142/kt10006.32

  15. Mylnikov, L.A., Managing economic efficiency of production systems in a fluent flow of new projects, Probl. Upr., 2020, no. 6, pp. 31–45.  https://doi.org/10.25728/pu.2020.6.4

  16. Titarenko, B., Hasnaoui, A., Titarenko, R., and Buzuk, L., Robust data analysis in innovation project portfolio management, MATEC Web Conf., 2018, vol. 170, p. 01017.  https://doi.org/10.1051/matecconf/201817001017

  17. Gutjahr, W.J., Optimal dynamic portfolio selection for projects under a competence development model, OR Spectrum, 2011, vol. 33, no. 1, pp. 173–206.  https://doi.org/10.1007/s00291-009-0180-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Sharifighazvini, M.R., Ghezavati, V.R., Raissi, S., and Makui, A., Integration of a new MCDM approach based on the DEA, FANP with MONLP for efficiency-risk assessment to optimize project portfolio by branch and bound: a real case-study, Econ. Comput. Econ. Cybern. Stud. Res., 2018, vol. 52, no. 1, pp. 261–278.  https://doi.org/10.24818/18423264/52.1.18.16

    Article  Google Scholar 

  19. Yu, L., Wang, S., Wen, F., Lai, K.K., Genetic algorithm-based multi-criteria project portfolio selection, Ann. Oper. Res., 2012, vol. 197, no. 1, pp. 71–86.  https://doi.org/10.1007/s10479-010-0819-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Tavana, M., Khalili-Damghani, and Abtahi, A.-R., A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm, Ann. Oper. Res., 2013, vol. 206, no. 1, pp. 449–483.  https://doi.org/10.1007/s10479-013-1387-3

    Article  Google Scholar 

  21. Burkova, I., Titarenko, B., Hasnaoui, A., and Titarenko, R., Network programming theory application to project portfolio formation, Serb. J. Manage., 2021, vol. 16, no. 1, pp. 5–19.  https://doi.org/10.5937/sjm16-24417

    Article  Google Scholar 

  22. Mylnikov, L.A., The model of effective management in the formation of a production portfolio, Autom. Doc. Math. Linguist., 2021, vol. 55, no. 5, pp. 203–209.  https://doi.org/10.3103/S0005105521050034

    Article  Google Scholar 

  23. Geunes, J., Taaffe, K., and Romeijn, H.E., Models for integrated production planning and order selection, IIE Ann. Conf., Proc., Norcross, Ga., 2002, 2002, pp. 1–6.

  24. Perez-Castillo, R., Ruiz-Gonzalez, F., Genero, M., and Piattini, M., A systematic mapping study on enterprise architecture mining, Enterp. Inf. Syst., 2019, vol. 13, no. 5, pp. 675–718.  https://doi.org/10.1080/17517575.2019.1590859

    Article  Google Scholar 

  25. Kulkarni, V., Clark, T., Barat, S., and Barn, B., Model based enterprise simulation and analysis, Advances in Conceptual Modeling. ER 2014, Indulska, M. and Purao, S., Eds., Lecture Notes in Computer Science, vol. 8823, Cham: Springer, 2014, pp. 3–12.  https://doi.org/10.1007/978-3-319-12256-4_1

    Book  Google Scholar 

  26. Zimmermann, A., Schmidt, R., Sandkuhl, K., Wißotzki, M., Jugel, D., and Möhring, M., Digital enterprise architecture – Transformation for the internet of things, IEEE 19th Int. Enterprise Distributed Object Computing Workshop, Adelaide, 2015, IEEE, 2015, pp. 130–138.  https://doi.org/10.1109/EDOCW.2015.16

  27. Checkland, P.B., Systems Thinking, Systems Practice, New York: Willey, 1981.

    Google Scholar 

  28. Bertoni, M., Bordegoni, M., Cugini, U., Regazzoni, D., and Rizzi, C., PLM paradigm: How to lead BPR within the Product Development field, Comput. Ind., 2009, vol. 60, no. 7, pp. 476–484.  https://doi.org/10.1016/j.compind.2009.02.004

    Article  Google Scholar 

  29. Champy, J., Reengineering the Corporation: A Manifesto for Business Revolution, New York: Harper Collins, 1994.

    Google Scholar 

  30. Larsen, M.A. and Myers, M.D., BPR success or failure? A business process reengineering project in the financial services industry, Proc. 18th Int. Conf. on Information Systems. ICIS 1997, Atlanta, 1997, Association for Information Systems, 1997, pp. 367–382.

  31. Wilden, R., Hohberger, J., Devinney, T.M., and Lumineau, F., 60 years of March and Simon’s organizations: An empirical examination of its impact and influence on subsequent research, J. Manage. Stud., 2019, vol. 56, no. 8, pp. 1570–1604.  https://doi.org/10.1111/joms.12531

    Article  Google Scholar 

  32. Costello, K., The evolution of enterprise architecture, Gartner, 2019. https://www.gartner.com/smarterwithgartner/the-evolution-of-enterprise-architecture. Cited November 20, 2020.

  33. Bollard, A., Singla, A., and Sood, R., The next-generation operating model for the digital world, McKinsey Digital, https://www.mckinsey.com/business-functions/ mckinsey-digital/our-insights/the-next-generation-operating-model-for-the-digital-world. Cited November 20, 2020.

  34. Modern Business Process Automation: YAWL and Its Support Environment, Hofstede, A.H.M., Aalst, W.M.P., Adams, M., and Russell, N., Eds., Berlin: Springer, 2010.  https://doi.org/10.1007/978-3-642-03121-2

    Book  Google Scholar 

  35. Scheer, A.-W., ARIS—Modellierungsmethoden, Metamodelle, Anwendungen, Berlin: Springer, 2001, 4th ed.

    Book  Google Scholar 

  36. Business Process Model and Notation (BPMN), Object Management Group, 2013.

  37. Web Services Business Process Execution Language Version 2.0, OASIS, 2007.

  38. Amberg, M., Bodendorf, F., and Möslein, K.M., Wertschöpfungsorientierte Wirtschaftsinformatik, Springer-Lehrbuch, vol. 4, Berlin: Springer, 2011.  https://doi.org/10.1007/978-3-642-16756-0

  39. Dori, D., Object-process analysis: maintaining the balance between system structure and behaviour, J. Logic Comput., 1995, vol. 5, no. 2, pp. 227–249.  https://doi.org/10.1093/logcom/5.2.227

    Article  Google Scholar 

  40. Unified Modeling Language (OMG UML), Object Management Group, 2017.

  41. ArchiMate(r) 3.1 Specification, The Open Group, 2019.

  42. Penicina, L., Linking BPMN, ArchiMate, and BWW: Perfect match for complete and lawful business process models?, Short Paper Proc. 6th IFIP WG 8.1 Working Conf. on the Practice of Enterprise Modeling (PoEM), Riga, 2013, Grabis, J., Kirikova, M., Zdravkovic, J., and Stirna, J., Eds., 2013, pp. 156–165.

  43. Díaz-Madroñero, M., Mula, J., and Peidro, D., A review of discrete-time optimization models for tactical production planning, Int. J. Prod. Res., 2014, vol. 52, no. 17, pp. 5171–5205.  https://doi.org/10.1080/00207543.2014.899721

    Article  MATH  Google Scholar 

  44. Jalali, H. and Van Nieuwenhuyse, I., Simulation optimization in inventory replenishment: A classification, IIE Trans., 2015, vol. 47, no. 11, pp. 1217–1235.  https://doi.org/10.1080/0740817X.2015.1019162

    Article  Google Scholar 

  45. Scheidegger, A.P.G., Pereira, T.F., de Oliveira, M.L.M., Banerjee, A., and Montevechi, J.A.B., An introductory guide for hybrid simulation modelers on the primary simulation methods in industrial engineering identified through a systematic review of the literature, Comput. Ind. Eng., 2018, vol. 124, pp. 474–492.  https://doi.org/10.1016/j.cie.2018.07.046

    Article  Google Scholar 

  46. Sovetov, B.Ya. and Yakovlev, S.A., Modelirovanie sistem (Modeling of Systems), Moscow: Vyssh. Shkola, 2001.

  47. Mourtzis, D., Doukas, M., and Bernidaki, D., Simulation in manufacturing: Review and challenges, Procedia CIRP, 2014, vol. 25, pp. 213–229.  https://doi.org/10.1016/j.procir.2014.10.032

    Article  Google Scholar 

  48. Doyle, P.G., Grinstead and Snell’s Introduction to Probability, Providence, R.I.: American Mathematical Society, 2006.

    Google Scholar 

  49. Mesarovich, M.D., Macko, D., and Takakhara, Y., Theory of Hierarchical Multilevel Systems, New York: Academic Press, 1970.

    Google Scholar 

  50. Watson, A.H. and McCabe, T.J., Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric, Gaithersburg, Md.: National Institute of Standards and Technology, 1996.

    Google Scholar 

  51. Kostrov, A.V., Informatsionnyi menedzhment. Otsenka urovnya razvitiya informatsionnykh system (Information Management: Assessing the Level of Development of Information Systems, Vladimir: Vladimir. Gos. Univ., 2012.

  52. Mylnikov, L., Efficiency management of discrete production systems under the dynamics of project portfolio, Comput. Ind. Eng., 2022, vol. 163, p. 107807.  https://doi.org/10.1016/j.cie.2021.107807

    Article  Google Scholar 

  53. Sutherland, J., SCRUM: The Art of Doing Twice the Work in Half the Time, New York: Crown Business, 2016.

    Google Scholar 

  54. Steinke, G. and Al-Deen, M.S., LaBrie, R., Innovating information system development methodologies with design thinking, Proc. Int. Conf. Appl. Innovation IT, 2017, vol. 5, no. 1, pp. 51–55.  https://doi.org/10.13142/KT10005.22

Download references

Funding

The study was supported by the Government of Perm krai, project no. C-26/692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Mylnikov.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mylnikov, L.A. Structural and Functional Modeling of Processes with a Dedicated Control Subject. Autom. Doc. Math. Linguist. 56, 42–54 (2022). https://doi.org/10.3103/S0005105522010083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0005105522010083

Keywords:

Navigation