Skip to main content
Log in

Experimental Verification of a Mathematical Model for the Temperature Mode of a Solar-Fuel Trench-Type Greenhouse

  • SOLAR PLANTS AND THEIR APPLICATION
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract—

A mathematical model for nonstationary heat balance is presented in the paper. It is used for investigating the indoor air temperature behaviour in a solar-fuel trench-type greenhouse. The microclimate of a solar-fuel trench-type greenhouse is estimated from the heat engineering point of view for Uzbekistan climate conditions. For verifying the presented mathematical model, we measure the air temperature inside the greenhouse built at the experimental site of Tashkent State Technical University. The accuracy of the presented mathematical model for a solar-fuel trench-type greenhouse is estimated by using the “standard deviation” method and correlation coefficient square. As the results show, the standard deviation is equal to 1.5°С, the standard deviation in percent is equal to 7.2% and the correlation coefficient is 0.86.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Sethi, V.P., On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation, Sol. Energy, 2009, vol. 83. pp. 21–38.

    Article  Google Scholar 

  2. Tiwari, G.N., Din, M., Srivastava, N.S.L., Jain, D., and Sodha, M.S., Evaluation of solar fraction (Fn) for north wall of a controlled environment greenhouse: an experimental validation, Int. J. Energy Res., 2002, vol. 26, pp. 203–215.

    Article  Google Scholar 

  3. Ҫengel, Yu.A. and Ghajar, A.J., Heat and Mass Transfer: Fundamentals and Applications, New York: McGraw-Hill Education, 2015, 5th ed.

    Google Scholar 

  4. Shcherbakov, M.V., Brebels, A., Shcherbakova, N.L., Tyukov, A.P., Janovsky, T.A., and Kamaev, V.A., A survey of forecast error measures, World Appl. Sci. J., 2013, vol. 24, pp. 171–176.

    Google Scholar 

  5. Kobayashi, K. and Salam, M.U., Comparing simulated and measured values using mean squared deviation and its components, Agron. J., 2000, vol. 92, no. 2, pp. 345–352.

    Article  Google Scholar 

  6. Kottegoda, N.T. and Rosso, R., Applied Statistics for Civil and Environmental Engineers, Oxford, UK: Blackwell Publishing, 2008.

    Google Scholar 

  7. Kozhenko, Ya.V., Kataev, A.V., Kataeva, T.M., Likholetova, N.V., Makarova, E.L., and Sharonina, L.V., Kollektivnaya monografiya (Collective Monograph), Ufa: Omega Sains, 2016.

  8. Pendzhiev, A.M., Energy efficiency of energy resources and climatic zoning of solar greenhouses, Aekon.: Ekon. Sel’sk. Khoz., 2017, no. 9, p. 21.

  9. Penzhiev, A.M., Agrotechnics of cultivation of melon tree (Carica papaya L.) in protected ground conditions in Turkmenistan, Extended Abstract of Doctoral (Agric.) Dissertation, Moscow, 2000.

  10. Pendzhiev, A.M., Mathematical model of thermotechnical calculations of the microclimate of a trench solar greenhouse, Al’tern. Energ. Ekol., 2010, no. 7, pp. 62–70.

  11. Pendzhiev, A.M., Mathematical modeling of the microclimate in a trench-type solar greenhouse, Al’tern. Energ. Ekol., 2010, no. 8, pp. 60–69.

  12. Pendzhiev, A.M. and Penzhieva, D.A., Possibilities of using geothermal waters for heating greenhouses of Turkmenistan, Materialy mezhdunarodnoi konferentsii “Energosberegayushchie tekhnologii v sel’skom khozyaistve” (Proc. Int. Conf. “Energy-Saving Technologies in Agriculture”), Moscow: Vseross. Inst. Elektrif. Sel’sk. Khoz., 2008, pp. 37–45.

  13. Rybakova, L.E. and Penzhiev, A.M., Energiya barada sokhbet (A Talk about Energy), Ashgabat: Magaryf, 1993.

  14. Strebkov, D.S., Pendzhiev, A.M., and Mamedsakhatov, B.D., Razvitie solnechnoi energetiki v Turkmenistane. Monografiya (Development of Solar Energy in Turkmenistan. Monograph), Moscow: Vseross. Inst. Elektrif. Sel’sk. Khoz., 2012.

  15. Yang, S.-H., Son, J.-E., Lee, S.-D., Cho, S.-I., Araghi, A.A., and Rhee, J.-Y., Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization, Span. J. Agric. Res., 2016, vol. 14, no. 1, id. e0202.

  16. Kurtener, D.A. and Chudnovskii, A.F., Calculation and regulation of the thermal regime in open and protected ground, Solnechnaya energetika (Solar Energy), Leningrad: Gidrometeoizdat, 1969.

    Google Scholar 

  17. Kurtener, D.A. and Chudnovskii, A.F., Agrometeorologicheskie osnovy teplovoi melioratsii pochv (Agrometeorological Foundations of Thermal Soil Reclamation), Leningrad: Gidrometeoizdat, 1979.

  18. Bairamov, R.B., Mezilov, A., Gurbanov, N., and Rybakova, L.E., Analytical studies of the non-stationary thermal regime of the solar greenhouse, Izv. Akad. Nauk TSSR, 1973, no. 3, pp. 29–32.

  19. Kurtener, A.D., Reshetin, O.L., Semikina, G.G., and Chudnovskii, A.F., Method for calculating soil temperature with separate consideration of temporal changes in meteorological parameters, Sb. trudov po agrofizike (Collection of Works on Agrophysics), Leningrad: Agrofiz. Nauchno-Issled. Inst., 1970, vol. 26, pp. 16–27.

    Google Scholar 

  20. Kurbanov, N. and Kurbanova, G., Kolichestvennoe opisanie temperaturnykh rezhimov kul’tivatsionnykh sooruzhenii, obogrevaemykh solnechnoi radiatsiei (Quantitative Description of the Temperature Regimes of Cultivation Facilities Heated by Solar Radiation), Ashkhabad: TurkmeNIITI, 1983.

  21. Kurtener, D.A., Reshetin, O.L., and Chudnovskii, A.F., Solving the heat conduction equations for a variable transfer coefficient, Sb. trudov po agrofizike (Collection of Works on Agrophysics), 1970, vol. 26, pp. 80–99.

  22. Khairitdinov, B., Development, research and implementation of a solar greenhouse-dryer with a subsoil heat accumulator, Extended Abstract of Doctoral (Eng.) Dissertation, Ashkhabad, 1990.

  23. Chudnovskii, A.F., Teplofizika pochv (Soil Thermophysics), Moscow: Nauka, 1976.

  24. Anufriev, L.N., Kozhinov, I.A., and Pozin, G.M., Teplofizicheskie raschety sel’skokhozyaistvennykh zdanii (Thermophysical Calculations for Agricultural Buildings), Moscow: Stroiizdat, 1974.

  25. Prishchep, L.G., Effektivnaya elektrifikatsiya zashchishchennogo grunta (Efficient Electrification of Protected Ground), Moscow: Kolos, 1980.

  26. Pendzhiev, A.M., Agrotechnics of cultivation of melon tree (Carica papaya L.) in protected ground conditions in Turkmenistan, Extended Abstract of Doctoral (Agric.) Dissertation, Moscow, 2000.

  27. Bikhele, Z.N., Moldau, Kh.A., and Ross, Yu.K., Matematicheskoe modelirovanie transpiratsii i fotosinteza rastenii pri nedostatke pochvennoi vlagi (Mathematical Modeling of Plant Transpiration and Photosynthesis under Conditions of Insufficient Soil Moisture), Leningrad: Gidrometeoizdat, 1980.

  28. Penzhiev, A.M., Mathematical modeling of thermotechnical calculations of the microclimate and agroclimatic zoning of the solar greenhouse, Geliotekhnika, 2001, no. 3, pp. 13–21.

  29. Rauner, Yu.L., Teplovoi balans rastitel’nogo pokrova (Thermal Balance of Vegetation Cover), Leningrad: Gidrometeoizdat, 1986.

  30. Tabun’shchikov, Yu.A., Raschety temperaturnogo rezhima pomeshcheniya i trebuemoi moshchnosti dlya ego otopleniya ili okhlazhdeniya (Calculations of the Temperature Regime of the Room and the Required Power for Its Heating or Cooling), Moscow: Stroiizdat, 1981.

  31. Tooming, Kh.G., Solnechnaya radiatsiya i formirovanie urozhaya (Solar Radiation and Crop Formation), Leningrad: Gidrometeoizdat, 1977.

  32. Bairamov, R.B., Rybakova, L.E., and Gurbanov, N., A simplified method for thermal calculation of a solar greenhouse, taking into account the non-stationarity of its operation, Geliotekhnika, 1973, no. 3, pp. 45–49.

  33. Rybakova, L.E. and Penzhiev, A.M., Rekomendatsii po vyrashchivaniyu kofeinykh derev’ev v usloviyakh solnechnoi teplitsy (Recommendations for Growing Coffee Trees in a Solar Greenhouse), Ashkhabad: TurkmenNIINTI, 1990.

  34. Botirov, B.M., Halimov, A.S., et al., The program for calculating the temperature regime of a trench-type greenhouse, DGU 10743, 2021.

  35. Lykov, A.V., Teplomassoobmen (Heat and Mass Exchange), Moscow: Energiya, 1978, 2nd ed.

    Google Scholar 

  36. Lykov, A.V., Teoriya teploprovodnosti. Uchebnoe posobie (Theory of Thermal Conductivity. Handbook), Moscow: Vysshaya shkola, 1967.

  37. Halimov, A., Lauster, M., and Muller, D., Validation and integration of a latent heat storage model into building envelopes of a high-order building model for Modelica library AixLib, Energy Build., 2019, vol. 202, id. 109336. https://doi.org/10.1016/j.enbuild.2019.109336

Download references

ACKNOWLEDGMENTS

The authors thank academician of the Academy of Sciences of the Republic of Uzbekistan, R.A. Muminov and Dr. Sc. M.N. Tursunov for discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Yuldoshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Zikeeva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botirov, B.M., Halimov, A.S., Yuldoshev, I.A. et al. Experimental Verification of a Mathematical Model for the Temperature Mode of a Solar-Fuel Trench-Type Greenhouse. Appl. Sol. Energy 57, 510–516 (2021). https://doi.org/10.3103/S0003701X21060050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X21060050

Keywords:

Navigation