Skip to main content
Log in

Correlation between Photoelectrochemical and Spectrophotometric Study of Dye-Surfactant Combination in Photogalvanic Cell

  • SOLAR ENGINEERING MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The photogalvanic cells are rechargeable device with the sun light in which surfactant solutions are potentially important for efficient energy conversion and storage. Here, effect of cationic cetyltrimethyl ammonium bromide (CTAB), anionic sodium dodecyl sulphate (SDS) and non ionic tween 80 surfactants on the electrical output of the cationic oxazine dye brilliant cresyl blue (BCB)-fructose (redox couple) system in photogalvanic cells have been studied. For this, the photopotential and photocurrent for different cells having BCB-fructose system without and with surfactant (CTAB, SDS and tween 80) in the alkaline medium have been measured. The total 30 different cells have been prepared for optimizing the concentration of electrolytes corresponding to the higher electrical out put. Generally, the electrical output increases in presence of a particular surfactant, due to increase in solubilization and stabilization properties of dye molecules in the water. The amount of enhancement in electrical output of BCB-fructose system was highest with SDS and lowest with tween 80, i.e. the order for BCB-fructose system with different surfactants in photogalvanic cells is: BCB-fructose-SDS > BCB-fructose-CTAB > BCB-fructose-tween 80. This order for electrical output was good agreement with the stability order of BCB-SDS/CTAB/tween 80 system, on the basis of spectrophotometric study. Hence, among these surfactants, SDS has stronger capacity, (due to opposite charge on BCB and SDS) to stabilize the BCB-fructose system leads to enhancement in electrical output of photogalvanic cells. Therefore, dye and surfactant, having chemical structure, like BCB and SDS, has a great importance of improvement of electrical performance to photogalvanic cells in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Rideal, E.K. and Williams, E.G., The action of light on the ferrous-ferric/iodine iodide equilibrium, J. Chem. Soc. Trans., 1925, vol. 127, pp. 258–269.

    Article  Google Scholar 

  2. Rabinowitch, E., The photogalvanic effect - I: The photochemical properties of the thionine-iron system, J. Chem. Phys., 1940, vol. 8, pp. 551–559.

    Article  Google Scholar 

  3. Rabinowitch, E., The photogalvanic effect. II: The photochemical properties of thionine-iron system, J. Chem. Phys., 1940, vol. 8, pp. 560–566.

    Article  Google Scholar 

  4. Shigehara, K. and Tsuchida, E., Mechanism of photogalvanic effect in thionine-ferrous salt system, J. Phys. Chem., 1977, vol. 81, pp. 1883–1886.

    Article  Google Scholar 

  5. De Groot, M.S., Hendrilks, P.A.J.M., and Brokken-Zijp, J.C.M., Potential/current characteristics of the ferrous-thionine photogalvanic cell, Chem. Phys. Lett., 1983, vol. 97, pp. 521–527.

    Article  Google Scholar 

  6. Groenen, E.J.J., de Groot, M.S., and de Ruiter, R., Carbon electrodes in the ferrous/thionine photogalvanic cell: a quantitative study of electrode selectivity, Electrochim. Acta, 1985, vol. 30, pp. 1199–1204.

    Article  Google Scholar 

  7. Bhowmik, B.B., Chaudhuri, R., and Rohatgi-Mukherjee, K.K., Dye-surfactant interaction and photogalvanic effect, Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 1987, vol. 26, pp. 95–98.

    Google Scholar 

  8. Lingamurthy, S., Bhanumathi, V., Sethuram, B., et al., Photogalvanic cells based on the photoreduction of xanthenes dyes using riboflavin as a sensitizer in aqueous/micellar medium, Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 1990, vol. 29, pp. 733–736.

    Google Scholar 

  9. Ghosh, G.K., Ghosh, S.K., and Bhattacharya, S.C., Role of nonionic micelles of tween in photovoltage generation using fluorescence dye, J. Oleo. Sci., 2004, vol. 53, pp. 73–77.

    Article  Google Scholar 

  10. Jana, A.K. and Parameswari, S., Studies on the molecular interaction of safranine-T with surfactants, Colloid Polym. Sci., 2005, vol. 283, pp. 1056–1062.

    Article  Google Scholar 

  11. Bi, Z., Li, Y., and Liu, Z., Study of the transparent electrode photogalvanovoltaic cell, Taiyangneng. Xuebao, 1980, vol. 1, pp. 140–147.

    Google Scholar 

  12. Bowen, W.R., Electrochemical and photochemical investigations of the iron-thionine system in micellar sodium dodecylsulphate solution, Acta Chem. Scand. A, 1981, vol. 35, pp. 31–315.

    Google Scholar 

  13. Srivastva, R.C., Srinivasan, R., Marwadi, P.R., et al., Surfactant micelles for solar energy storage, Curr. Sci., 1982, vol. 51, pp. 1015–1017.

    Google Scholar 

  14. Koli, P., Photogalvanic cells: comparative study of various synthetic dye and natural photosensitizer present in spinch extract, RSC Adv., 2014, vol. 4, pp. 46 194–46 202.

    Article  Google Scholar 

  15. Bhimwal, M.K. and Gangotri, K.M., A comparative study on the performance of photogalvanic cells with different photosensitizer for solar energy conversion and storage, D-xylose-NaLS systems, Energy, 2011, vol. 36, pp. 1324–1331.

    Article  Google Scholar 

  16. Gangotri, K.M., Solanki, P.P., and Bhimwal, M.K., Use of anionic micelle in photogalvanic cells for solar energy conversion and storage, sodium lauryl sulphate-mannose-brilliant cresyl blue system, Energy Source, Part A, 2013, vol. 35, pp. 2209–2217.

    Google Scholar 

  17. Koli, P., Sodium lauryl sulphate enhanced solar energy conversion by photogalvanic effect of rhodamine B-fructose in artificial light, Energy Tech. Environ. Sci., 2016, vol. 1, pp. 4624–4629.

    Google Scholar 

  18. Sharma, U. and Koli, P., Energy conversion in electrolyte under artificial light: fast green FCF-fructose-surfactant-small Pt electrode photogalvanic cell, Appl. Solar Energy, 2016, vol. 52, pp. 76–83.

    Article  Google Scholar 

  19. Koli, P., Solar energy conversion and storage using naphthol green B dye photosensitizer in photogalvanic cell, Appl. Solar Energy, 2014, vol. 50, pp. 67–73.

    Article  Google Scholar 

  20. Koli, P., Study of enhanced photogalvanic effect of naphthol green B in natural sunlight, J. Power Sources, 2015, vol. 285, pp. 310–317.

    Article  Google Scholar 

  21. Koli, P., Surfactant and natural sunlight enhanced photogalvanic effect of Sudan I dye, Arab. J. Chem., 2017, vol. 10, pp. 1077–1083.

    Article  Google Scholar 

  22. Genwa, K.R. and Kumar, A., Studies in nile blue-NaLS system for solar energy conversion, management, photogalvanic performance and conversion efficiency, J. Indian Counc. Chem., 2009, vol. 26, pp. 181–186.

    Google Scholar 

  23. Solanki, P.P. and Gangotri, K.M., Studies of the anionic micelles effect on photogalvanic cells for solar energy conversion and storage in sodium lauryl sulphate-safranine-D-xylose system, in Proceedings of the World Renewable Energy Congress, Sweden, 2013. https://doi.org/10.3384/ecp110572807.

  24. Gangotri, K. and Pramila, S., Use of anionic micelles in photogalvanic cells for solar power energy conversion and storage nals-mannitol-safranine system, Energy Source, Part A, 2006, vol. 28, pp. 149–156.

    Google Scholar 

  25. Gangotri, P. and Koli, P., Study of the enhancement on photogalvanics: solar energy conversion and storage in EDTA-safranine O-NaLS system, Sustainable Energy Fuels, 2017, vol. 11, pp. 882–890.

    Article  Google Scholar 

  26. Genwa, K.R. and Chouhan, A., Role of heterocyclic dye (Azur-A) as a photosensitizer in photogalvanic cell for solar energy conversion and storage, NaLS-ascorbic acid system, Solar Energy, 2006, vol. 80, pp. 1213–1219.

    Article  Google Scholar 

  27. Gunsaria, R.K., Gangotri, K.M., and Meena, R.C., Use of surfactant in photogalvanic cell for solar energy conversion and storage NaLS-glycerol-Azur A, Afinidad, 2003, vol. 60, pp. 563–570.

    Google Scholar 

  28. Genwa, K.R. and Chouhan, A., Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage, NaLS-ascorbic acid system, J. Chem. Sci., 2004, vol. 116, pp. 339–345.

    Article  Google Scholar 

  29. Ameta, S.C., Khamsera, S., Chittora, A.K., et al., Use of sodium lauryl sulphate in photogalvanic cell for solar energy conversion and storage, methylene blue-EDTA system, Int. J. Energ. Res., 1989, vol. 13, pp. 643–647.

    Article  Google Scholar 

  30. Gangotri, K.M. and Solanki, P.P., Use of sodium lauryl sulphate as a surfactant in a photogalvanic cell for solar energy conversion and storage: a sodium lauryl sulphate-methylene blue-mannose system, Energy Source, Part A, 2013, vol. 35, pp. 1467–1475.

    Google Scholar 

  31. Genwa, K.R., Kumar, A., and Sonel, A., Photogalvanic solar energy conversion study with photosensitizer toluidine blue and malachite green in presence of NaLS, Appl. Energy, 2009, vol. 86, pp. 1431–1436.

    Article  Google Scholar 

  32. Gangotri, K.M. and Bhimwal, M.K., Study the performance of photogalvanic cells for solar energy conversion and storage, toluidine blue-D-xylose-NaLS system, Int. J. Energy Res., 2011, vol. 35, pp. 545–552.

    Article  Google Scholar 

  33. Genwa, K.R. and Singh, K., Development of photogalvanic cell and its application in solar energy conversion and storage, Int. J. Chem., 2012, vol. 1, pp. 542–549.

    Google Scholar 

  34. Genwa, G.R. and Kumar, A., Dye sensitized photogalvanic solar cells, studies in a methyl green-NaLS system in view of energy conversion, Energy Source, 2012, vol. 34, pp. 1261–1270.

    Article  Google Scholar 

  35. Solanki, P.P. and Gangotri, K.M., The role of surfactants in photogalvanic, solar energy conversion and storage in the sodium lauryl sulphate-thymol blue-mannose system, Arab. J. Sci. Eng., 2012, vol. 37, pp. 91–100.

    Article  Google Scholar 

  36. Genwa, K.R. and Kumar, A., Role of rhodamine B in photogalvanic generation using anionic surfactant in liquid phase photoelectrochemical cell for solar energy conversion and storage, J. Indian Chem. Soc., 2010, vol. 87, pp. 93–939.

    Google Scholar 

  37. Gangotri, K.M. and Bhimwal, M.K., Study the performance of photogalvanic cells for solar energy conversion and storage, Solar Energy, 2010, vol. 84, pp. 1294–1300.

    Article  Google Scholar 

  38. Gangotri, K.M., Meena, R.C., and Meena, R., Use of micelles in photogalvanic cell for solar energy conversion and storage, cetyl trimethylammonium bromide-glucose-toluidine blue system, J. Photochem. Photobiol. A: Chem., 1999, vol. 123, pp. 93–97.

    Article  Google Scholar 

  39. Gangotri, K.M., Kalla, P., Genwa, K.R., et al., Use of tween 80 in photogalvanic cell for solar energy conversion and storage, toluidine blue-glucose system, J. Indian Counc. Chem., 1994, vol. 10, pp. 19–22.

    Google Scholar 

  40. Mahmoud, S.A., Mohamed, B.S., El-Tabei, A.S., et al., Improvement of the photogalvanic cell for solar energy conversion and storage: rose bengal-oxalic acid-tween 80 system, Energy Proc., 2014, vol. 46, pp. 227–236.

    Article  Google Scholar 

  41. Holmes, W.C., The influence of variation in concentration on the absorption spectra of dye solutions, Ind. Eng. Chem., 1924, vol. 16, pp. 35–40.

    Article  Google Scholar 

  42. Teuber, M., Rogner, M., and Berry, S., Fluorescent probes for non-invasive bioenergetic studies of whole cyanobacterial cells, Biochim. Biophys. Acta, 2001, vol. 1506, pp. 31–46.

    Article  Google Scholar 

  43. Liu, Y. and Hu, N., Loading/release behavior of (chitosan/DNA)n layer-by-layer films towards negatively charged anthraquinone and its application in electrochemical detection of natural DNA damage, Biosens. Bioelectron., 2007, vol. 23, pp. 661–667.

    Article  Google Scholar 

  44. Zhu, Y., Song, S., and Dong, S., Electrode processes of hemoglobin at a platinum electrode covered by brilliant cresyl blue, Bioelectrochem. Bioenerg., 1989, vol. 21, pp. 233–243.

    Article  Google Scholar 

  45. Moztarzadeh, F. and Kazemzadeh, A., Optical oxalate detector based on chemical modification of a polymer film, Sens. Actuators, B, 2005, vol. 106, pp. 832–836.

    Article  Google Scholar 

  46. Ensafi, A.A. and Abassi, S., Sensitive reaction rate method for the determination of low levels of formaldehyde with photometric detection, Fresenius J. Anal. Chem., 1999, vol. 363, pp. 376–379.

    Article  Google Scholar 

  47. Halafihi, T. and Prasad, S., Standardization of kinetic determination of nitrite based on its catalytic effect on an indicator reaction, Asian J. Chem., 2002, vol. 14, pp. 1683–1692.

    Google Scholar 

  48. Feng, G., Changqing, Z., Leyu, W., et al., The interaction of brilliant cresyl blue with surfactant and its application in the determination of protein, Chin. J. Anal. Chem., 2002, vol. 3, pp. 324–326.

    Google Scholar 

  49. Sadeghie, M.M., Emamei, F., and Ensafi, A.A., Kinetic reaction rate method for the determination of hydrazine with spectrophotometric detection, J. Anal. Chem., 1999, vol. 54, pp. 1024–1027.

    Google Scholar 

  50. Zhang, Q.F., Guo, Y.X., Li, R., et al., Complexation study of brilliant cresyl blue with β-cyclodextrin and its derivatives by UV-vis and fluorospectrometry, Spectrochim. Acta, 2008, vol. 69, pp. 65–70.

    Article  Google Scholar 

  51. Mieliauskiene, R., Nistor, M., Laurinavicius, V., et al., Amperometric determination of acetate with a tri-enzyme based sensor, Sens. Actuators, B, 2006, vol. 113, pp. 671–676.

    Article  Google Scholar 

  52. You, H., Spaeth, H., Linhard, V.N.L., et al., Role of surfactants in the interaction of dye molecules in natural DNA polymers, Langmuir, 2009, vol. 25, pp. 11698–11708.

    Article  Google Scholar 

  53. Olorunsola, E.O. and Adedokun, M.O., Surface activity as basis for pharmaceutical applications of hydrocolloids: a review, J. Appl. Pharm. Sci., 2014, vol. 4, pp. 110–116.

    Google Scholar 

  54. Chignell, C.F. and Bilski, P., Properties of differently charged micelles containing rose bengal: application in photosensitization studies, J. Photochem. Photobiol. A: Chem., 1994, vol. 77, pp. 49–58.

    Article  Google Scholar 

  55. Kalyansundaram, K., Photophysics of molecules in micelle-forming surfactant solutions, Chem. Soc. Rev., 1978, vol. 7, pp. 453–472.

    Article  Google Scholar 

  56. Moroi, Y., Braun, A.M., and Gratzel, M., Handbook of photochemistry, J. Am. Chem. Soc., 1979, vol. 101, pp. 567–572.

    Article  Google Scholar 

  57. Mall, C. and Solanki, P.P., Spectrophotometric and conductometric studies of molecular interaction of brilliant cresyl blue with cationic, anionic and non-ionic surfactant in aqueous medium for application in photogalvanic cells for solar energy conversion and storage, Energy Rep., 2018, vol. 4, pp. 23–30.

    Article  Google Scholar 

  58. Chakraborty, T. and Ghosh, S., A unified survey of applicability of theories of mixed adsorbed film and mixed micellization, J. Surfact. Deterg., 2008, vol. 11, pp. 323–334.

    Article  Google Scholar 

  59. Ghosh, S., Das Burman, A., De, G.C., et al., Interfacial and self-aggregation of binary mixtures of anionic and nonionic amphiphiles in aqueous medium, J. Phys. Chem. B, 2011, vol. 115, pp. 11098–11112.

    Article  Google Scholar 

  60. Hoffman, M.Z. and Lichtin, N.N., Photochemical determinants of the efficiency of photogalvanic conversion of solar energy, Solar Energy, 1979, pp. 153–187.

  61. Hillson, P.J. and Rideal, E., The becquerel effect in the presence of dyestuffs and the action of light on dyes, Proc. R. Soc. London, Ser. A, 1953, vol. 216, pp. 458–476.

    Article  Google Scholar 

  62. Burkinshaw, S.M., Physico-Chemical Aspects of Textile Coloration, Ser.: SDC Soc. of Dyes and Colourists, New York: Wiley, 2016, vol. 1, p. 1–648.

  63. Sharma, U., Gangotri, K.M., and Koli, P., Brilliant cresyl blue-fructose for enhancement of solar energy conversion and storage capacity of photogalvanic cells, Fuel, 2011, vol. 90, pp. 3336–3342.

    Article  Google Scholar 

  64. Koli, P. and Sharma, U., Photochemical solar power and storage through photogalvanic cells: comparing performance of dye materials, Energy Sources, Part A, 2017, vol. 39, pp. 555–561.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, for providing all necessary laboratory facilities. Ms. Chandrakanta Mall is thankful to UGC, New Delhi for National Fellowship for Other Backward Classes Junior Research Fellowship (F/2016-17/NFO-2015-17/OBC-UTT-31589), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Prakash Solanki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrakanta Mall, Tiwari, S. & Solanki, P.P. Correlation between Photoelectrochemical and Spectrophotometric Study of Dye-Surfactant Combination in Photogalvanic Cell. Appl. Sol. Energy 55, 18–29 (2019). https://doi.org/10.3103/S0003701X19010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X19010092

Keywords:

Navigation