Skip to main content
Log in

mRNP Transport in Eukaryotes. mRNP Export from the Nucleus

  • REVIEWS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Newly synthesized mRNA undergoes several stages of maturation, and the proteins involved in these processes form the mRNP particle. Mature mRNA passes through the nuclear pore from the nucleus to the cytoplasm, where it is transported to the ribosome and mRNA is translated into protein. Recruiting the export and transport factors to the newly synthesized mRNA occurs partly cotranscriptionally. Many of the proteins associate with mRNA from the earliest stages of transcription to its localization in the cytoplasm. Other factors perform their functions strictly at a certain stage. The protein composition of the mRNP particle changes during its adherence to the nuclear pore, passing through it, and being delivered to the site of localization in the cytoplasm. This paper describes the main participants in the export of the mRNP particle, starting with its delivery to the nuclear pore and its attachment to and translocation through the nuclear pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kurshakova, M.M., Georgieva, S.G., and Kopytova, D.V., Protein complexes coordinating mRNA export from the nucleus into the cytoplasm, Mol. Biol. (Moscow), 2016, vol. 50, no. 5, pp. 639–644.

    Article  CAS  Google Scholar 

  2. Bjork, P., Persson, J.O., and Wieslander, L., Intranuclear binding in space and time of exon junction complex and NXF1 to premRNPs/mRNPs in vivo, J. Cell Biol., 2015, vol. 211, no. 1, pp. 63–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Culjkovic-Kraljacic, B. and Borden, K.L., Aiding and abetting cancer: mRNA export and the nuclear pore, Trends Cell Biol., 2013, vol. 23, no. 7, pp. 328–335.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Monecke, T., Dickmanns, A., and Ficner, R., Allosteric control of the exportin CRM1 unraveled by crystal structure analysis, FEBS J., 2014, vol. 281, no. 18, pp. 4179–4194.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Brennan, C.M., Gallouzi, I., and Steitz, J.A., Protein ligands to HuR modulate its interaction with target mRNAs in vivo, J. Cell Biol., 2000, vol. 151, no. 1, pp. 1–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Topisirovic, I., Siddiqui, N., Lapointe, V.L., et al., Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP, EMBO J., 2009, vol. 28, no. 8, pp. 1087–1098.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Yang, J., Bogerd, H.P., Wang, P.J., et al., Two closely related human nuclear export factors utilize entirely distinct export pathways, Mol. Cell, 2001, vol. 8, no. 2, pp. 397–406.

    Article  PubMed  CAS  Google Scholar 

  8. Aitchison, J.D. and Rout, M.P., The yeast nuclear pore complex and transport through it, Genetics, 2012, vol. 190, no. 3, pp. 855–883.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Alber, F., Dokudovskaya, S., Veenhoff, L.M., et al., The molecular architecture of the nuclear pore complex, Nature, 2007, vol. 450, no. 7170, pp. 695–701.

    Article  PubMed  CAS  Google Scholar 

  10. Kiseleva, E., Allen, T.D., Rutherford, S., et al., Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments, J. Struct. Biol., 2004, vol. 145, no. 3, pp. 272–288.

    Article  PubMed  CAS  Google Scholar 

  11. Terry, L.J. and Wente, S.R., Flexible gates: Dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport, Eukaryotic Cell, 2009, vol. 8, no. 12, pp. 1814–1827.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. von Appen, A., Kosinski, J., Sparks, L., et al., In situ structural analysis of the human nuclear pore complex, Nature, 2015, vol. 526, no. 7571, pp. 140–143.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Alcazar-Roman, A.R., Tran, E.J., Guo, S., and Wente, S.R., Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export, Nat. Cell Biol., 2006, vol. 8, no. 7, pp. 711–716.

    Article  PubMed  CAS  Google Scholar 

  14. Askjaer, P., Bachi, A., Wilm, M., et al., RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase, Mol. Cell. Biol., 1999, vol. 19, no. 9, pp. 6276–6285.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Bernad, R., van der Velde, H., Fornerod, M., and Pickersgill, H., Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export, Mol. Cell. Biol., 2004, vol. 24, no. 6, pp. 2373–2384.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Hutten, S. and Kehlenbach, R.H., CRM1-mediated nuclear export: To the pore and beyond, Trends Cell Biol., 2007, vol. 17, no. 4, pp. 193–201.

    Article  PubMed  CAS  Google Scholar 

  17. Kehlenbach, R.H., Dickmanns, A., Kehlenbach, A., et al., A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export, J. Cell Biol., 1999, vol. 145, no. 4, pp. 645–657.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Galy, V., Gadal, O., Fromont-Racine, M., et al., Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1, Cell, 2004, vol. 116, no. 1, pp. 63–73.

    Article  PubMed  CAS  Google Scholar 

  19. Vinciguerra, P., Iglesias, N., Camblong, J., et al., Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export, EMBO J., 2005, vol. 24, no. 4, pp. 813–823.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Kosova, B., Pante, N., Rollenhagen, C., et al., Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with nic96p, J. Biol. Chem., 2000, vol. 275, no. 1, pp. 343–350.

    Article  PubMed  CAS  Google Scholar 

  21. Strambio-de-Castillia, C., Blobel, G., and Rout, M.P., Proteins connecting the nuclear pore complex with the nuclear interior, J. Cell Biol., 1999, vol. 144, no. 5, pp. 839–855.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Vinciguerra, P. and Stutz, F., mRNA export: An assembly line from genes to nuclear pores, Curr. Opin. Cell Biol., 2004, vol. 16, no. 3, pp. 285–292.

    Article  PubMed  CAS  Google Scholar 

  23. Casolari, J.M., Brown, C.R., Drubin, D.A., et al., Developmentally induced changes in transcriptional program alter spatial organization across chromosomes, Genes Dev., 2005, vol. 19, no. 10, pp. 1188–1198.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Ma, J., Liu, Z., Michelotti, N., et al., High-resolution three-dimensional mapping of mRNA export through the nuclear pore, Nat. Commun., 2013, vol. 4, p. 2414.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Siebrasse, J.P., Kaminski, T., and Kubitscheck, U., Nuclear export of single native mRNA molecules observed by light sheet fluorescence microscopy, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 24, pp. 9426–9431.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kiseleva, E., Goldberg, M.W., Allen, T.D., and Akey, C.W., Active nuclear pore complexes in Chironomus: Visualization of transporter configurations related to mRNP export, J. Cell Sci., 1998, vol. 111, part 2, pp. 223–236.

    PubMed  CAS  Google Scholar 

  27. Englmeier, L., Fornerod, M., Bischoff, F.R., et al., RanBP3 influences interactions between CRM1 and its nuclear protein export substrates, EMBO Rep., 2001, vol. 2, no. 10, pp. 926–932.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Fornerod, M., van Deursen, J., van Baal, S., et al., The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88, EMBO J., 1997, vol. 16, no. 4, pp. 807–816.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Forler, D., Rabut, G., Ciccarelli, F.D., et al., RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export, Mol. Cell. Biol., 2004, vol. 24, no. 3, pp. 1155–1167.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Tran, E.J., Zhou, Y., Corbett, A.H., and Wente, S.R., The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA: Protein remodeling events, Mol. Cell, 2007, vol. 28, no. 5, pp. 850–859.

    Article  PubMed  CAS  Google Scholar 

  31. Weirich, C.S., Erzberger, J.P., Flick, J.S., et al., Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export, Nat. Cell Biol., 2006, vol. 8, no. 7, pp. 668–676.

    Article  PubMed  CAS  Google Scholar 

  32. Schmitt, C., von Kobbe, C., Bachi, A., et al., Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p, EMBO J., 1999, vol. 18, no. 15, pp. 4332–4347.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Snay-Hodge, C.A., Colot, H.V., Goldstein, A.L., and Cole, C.N., Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export, EMBO J., 1998, vol. 17, no. 9, pp. 2663–2676.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Hodge, C.A., Tran, E.J., Noble, K.N., et al., The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1, Genes Dev., 2011, vol. 25, no. 10, pp. 1052–1064.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Noble, K.N., Tran, E.J., Alcazar-Roman, A.R., et al., The Dbp5 cycle at the nuclear pore complex during mRNA export II: Nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1, Genes Dev., 2011, vol. 25, no. 10, pp. 1065–1077.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Folkmann, A.W., Noble, K.N., Cole, C.N., and Wente, S.R., Dbp5, Gle1-IP6 and Nup159: A working model for mRNP export, Nucleus (Austin, Tex.), 2011, vol. 2, no. 6, pp. 540–548.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kopytova.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glukhova, A.A., Nabirochkina, E.N. & Kopytova, D.V. mRNP Transport in Eukaryotes. mRNP Export from the Nucleus. Mol. Genet. Microbiol. Virol. 33, 182–186 (2018). https://doi.org/10.3103/S0891416818030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416818030047

Keywords:

Navigation