Skip to main content
Log in

Eigenvalues for iterative systems of Sturm-Liouville fractional order two-point boundary value problems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we determine the eigenvalue intervals of λ 1, λ 2, ..., λ n for which the iterative system of nonlinear Sturm-Liouville fractional order two-point boundary value problem possesses a positive solution by an application of Guo-Krasnosel’skii fixed point theorem on a cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bai and H. Lü, Positive solutions for boundary value problems of nonlinear fractional differential equations. J. Math. Anal. Appl. 311 (2005), 495–505.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Benchohra, J. Henderson, S.K. Ntoyuas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338 (2008), 1340–1350.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.M. Davis, J. Henderson, K.R. Prasad and W. Yin, Eigenvalue intervals for non-linear right focal problems. Appl. Anal. 74 (2000), 215–231.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. Diethelm, The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics # 2004, Springer, Heidelberg-Dordrecht etc. (2011).

    Google Scholar 

  5. K. Diethelm and N. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), 229–248.

    Article  MATH  MathSciNet  Google Scholar 

  6. L.H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc. 120 (1994), 743–748.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Goodrich, Existence of a positive solution to a class of fractional differential equations. Comput. Math. Appl. 59 (2010), 3489–3499.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones. Academic Press, Orlando (1988).

    MATH  Google Scholar 

  9. J. Henderson and S.K. Ntouyas, Positive solutions for systems of n th order three-point nonlocal boundary value problems. Electronic J. of Qualitative Theory of Differential Equations 18 (2007), 1–12.

    Google Scholar 

  10. J. Henderson and S.K. Ntouyas, Positive solutions for systems of nonlinear boundary value problems. Nonlinear Studies 15 (2008), 51–60.

    MATH  MathSciNet  Google Scholar 

  11. J. Henderson, S.K. Ntouyas and I.K. Purnaras, Positive solutions for systems of generalized three-point nonlinear boundary value problems. Comment. Math. Univ. Carolin. 49, No 1 (2008), 79–91.

    MATH  MathSciNet  Google Scholar 

  12. J. Henderson, S.K. Ntouyas and I.K. Purnaras, Positive solutions for systems of second order four-point nonlinear boundary value problems. Commun. Appl. Anal. 12, No 1 (2008), 29–40.

    MATH  MathSciNet  Google Scholar 

  13. E.R. Kauffman and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electronic J. of Qualitative Theory of Differential Equations 3 (2008), 1–11.

    Google Scholar 

  14. R.A. Khan, M. Rehman and J. Henderson, Existence and uniqueness of solutions for nonlinear fractional differential equations with integral boundary conditions. Fractional Differential Calculus 1 (2011), 29–43.

    Article  MathSciNet  Google Scholar 

  15. A.A. Kilbas, H.M. Srivasthava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier, Amsterdam (2006).

    Book  MATH  Google Scholar 

  16. A.A. Kilbas and J.J. Trujillo, Differential equations of fractional order. Methods, results and problems, I. Appl. Anal. 78, No 1–2 (2001), 153–192.

    Article  MATH  MathSciNet  Google Scholar 

  17. M.A. Krasnosel’skii, Positive Solutions of Operator Equations. Noordhoff, Groningen (1964).

    Google Scholar 

  18. V. Laksmikantham and A.S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. 69 (2008), 2677–2682.

    Article  MathSciNet  Google Scholar 

  19. K.S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York (1993).

    MATH  Google Scholar 

  20. I. Podulbny, Fractional Differential Equations. Academic Press, San Diego (1999).

    Google Scholar 

  21. K.R. Prasad and B.M.B. Krushna, Multiple positive solutions for a coupled system of Riemann-Liouville fractional order two-point boundary value problems. Nonlinear Studies 20, No 4 (2013), 501–511.

    MathSciNet  Google Scholar 

  22. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integral and Derivatives: Theory and Applications. Gordon and Breach, Langhorne, PA (1993).

    Google Scholar 

  23. X. Su and S. Zhang, Solutions to boundary value problems for nonlinear differential equations of fractional order. Electronic J. of Differential Equations 26 (2009), 1–15.

    MathSciNet  Google Scholar 

  24. S. Zhang, Existence of solutions for a boundary value problem of fractional order. Acta Math. Sci. 26B (2006), 220–228.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapula Rajendra Prasad.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, K.R., Krushna, B.M.B. Eigenvalues for iterative systems of Sturm-Liouville fractional order two-point boundary value problems. Fract Calc Appl Anal 17, 638–653 (2014). https://doi.org/10.2478/s13540-014-0190-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0190-4

MSC 2010

Key Words and Phrases

Navigation