Skip to main content
Log in

Neuroinflammation and Alzheimer’s disease: lessons learned from 5-lipoxygenase

  • Communication
  • Published:
Translational Neuroscience

Abstract

Aside from the well-known amyloid beta and tau pathologies found in Alzheimer’s disease (AD), neuroinflammation is a well-established aspect described in humans and animal models of the disease. Inflammatory perturbations are evident not only in neurons, but also in non-neuronal cells and cytokines in the AD brain. Although the amyloid hypothesis implicates amyloid beta (Aβ) as the prime initiator of the AD, brain inflammation in AD has a complex relationship between Aβ and tau. Using our work with the 5-lipoxygenase protein as an example, we suggest that at least in the case of AD, there is an interdependent and not necessarily hierarchical pathological relationship between Aβ, tau and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzheimer’s Association, Alzheimer’s disease facts and figures, 2014, 10, 2, available at http://www.alz.org/downloads/Facts_Figures_2014.pdf

    Google Scholar 

  2. Holtzman D.M., Morris J.C., Goate A.M., Alzheimer’s disease: the challenge of the second century, Sci. Transl. Med., 2011, 3, 77sr1

    PubMed Central  PubMed  Google Scholar 

  3. Ono K., Yamada M., Low-n oligomers as therapeutic targets of Alzheimer’s disease, J. Neurochem., 2011, 117, 19–28

    Article  CAS  PubMed  Google Scholar 

  4. Iqbal K., Liu F., Gong C.X., Grundke-Iqbal I., Tau in Alzheimer disease and related tauopathies, Curr. Alzheimer Res., 2010, 7, 656–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Oddo S., Billings L., Kesslak J.P., Cribbs D.H., LaFerla F.M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome, Neuron, 2004, 43, 321–332

    CAS  Google Scholar 

  6. Oddo S., Caccamo A., Tran L., Lambert M.P., Glabe C.G., Klein W.L., et al., Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer’s disease. A link between Aβ and tau pathology, J. Biol. Chem., 2006, 281, 1599–1604

    Article  CAS  PubMed  Google Scholar 

  7. Rao K.S., Britton G.B., Fernandez P.L., Potential immunotargets for Alzheimer’s disease treatment strategies, J. Alzheimers Dis., 2010, 33, 297–312

    Google Scholar 

  8. Sheng J.G., Mrak R.E., Griffin W.S., Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms, Acta Neuropathol., 1997, 94, 1–5

    Article  CAS  PubMed  Google Scholar 

  9. Sheng J.G., Mrak R.E., Griffin W.S., Glial-neuronal interactions in Alzheimer’s disease: progressive association of IL-1α+ microglia and S100β+ astrocytes with neurofibrillary tangle stages, J. Neuropathol. Exp. Neurol., 1997, 56, 285–290

    Article  CAS  PubMed  Google Scholar 

  10. Hickman S.E., Allison E.K., El Khoury J., Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice, J. Neurosci., 2008, 28, 8354–8360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Johnston H., Boutin H., Allan S.M., Assessing the contribution of inflammation in models of Alzheimer’s disease, Biochem. Soc. Trans., 2011, 39, 886–890

    Article  CAS  PubMed  Google Scholar 

  12. D’Andrea M.R., Cole G.M., Ard M.D., The microglial phagocytic role with specific plaque types in the Alzheimer’s disease brain, Neurobiol. Aging, 2004, 25, 675–683

    Article  PubMed  Google Scholar 

  13. Permanne B., Adessi C., Saborio G.P., Fraga S., Frossard M.J., Van Dorpe J., et al., Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a β-sheet breaker peptide, FASEB J., 2002, 16, 860–862

    CAS  PubMed  Google Scholar 

  14. Krabbe G., Halle A., Matyash V., Rinnenthal J.L., Eom G.D., Bernhardt U., et al., Functional impairment of microglia coincides with betaamyloid deposition in mice with Alzheimer-like pathology, PLoS One, 2013, 8, e60921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Morales I., Jimenez J.M., Mancilla M., Maccioni R.B., Tau oligomers and fibrils induce activation of microglial cells, J. Alzheimer Dis., 2013, 141, 495–505

    Google Scholar 

  16. Bhaskar K., Konerth M., Kokiko-Cochran O.N., Cardona A., Ransohoff R.M., Lamb B.T., Regulation of tau pathology by the microglial fractalkine receptor. Neuron, 2010, 68, 19–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sheffield L.G., Marquis J.G., Berman N.E., Regional distribution of cortical microglial parallels that of neurofibrillary tangles in Alzheimer’s disease, Neurosci. Lett., 2000, 285, 165–168

    Article  CAS  PubMed  Google Scholar 

  18. Wright A.L., Zinn R., Hohensinn B., Konen L.M., Beynon S.B., Tan R.P., et al., Neuroinflammation an neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease, PloS One, 2013, 8, e59586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Blasko I., Veerhuis R., Stampfer-Kountchev M., Saurwein-Teissl M., Eikelenboom P., Grubeck-Loebenstein B., Costimulatory effects of interferon-Γ and interleukin-1β or tumor necrosis factor α on the synthesis of Aβ1-40 and Aβ1-42 by human astrocytes, Neurobiol. Dis., 2000, 7, 682–689

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y., Li M., Tang J., Song M., Xu X., Xiong J., et al., Glucocorticoids facilitate astrocytic amyloid-β peptide deposition by increased expression of APP and BACE1 and decreasing the expression of amyloid-β-degrading proteases, Endocrinology, 2011, 152, 2704–2715

    Article  CAS  PubMed  Google Scholar 

  21. Jo W.K., Law A.C., Chung S.K., The neglected co-star in the dementia drama: the putative roles of astrocytes in the pathogenesis of major neurocognitive disorders, Mol. Psychiatry, 2014, 19, 159–167

    Article  CAS  PubMed  Google Scholar 

  22. Garwood C.J., Pooler A.M., Atherton J., Hanger D.P., Noble W., Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture, Cell Death Dis., 2011, 2, e167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zilka N., Kazmerova Z., Jadhav S., Neradil P., Madari A., Obetkova D., et al., Who fans the flames of Alzheimer’s disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways, J. Neuroinflammation, 2012, 9, 47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Li Y, Liu L, Barger S.W., Griffin W.S., Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway, J. Neurosci., 2003, 23, 1605–1611

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Radmark O., Samuelsson B., Regulation of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis, Biochem. Biophys. Res. Comm., 2010, 396, 105–110

    Article  PubMed  Google Scholar 

  26. Bishayee K., Khuda-Bukhsh A.R., 5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy, Acta Biochim. Sin. (Shanghai), 2013, 45, 709–719

    Article  CAS  Google Scholar 

  27. Lammers C.H., Schweitzer P, Facchinetti P., Arrang J.M., Madamba S.G., Siggins G.R., et al., Arachidonate 5-lipoxygenase and its activating protein: prominent hippocampal expression and role in somatostatin signaling, J. Neurochem., 1996, 66, 147–152

    Article  CAS  PubMed  Google Scholar 

  28. Chinnici C.M., Yao Y., Praticò D., The 5-lipoxygenase enzymatic pathway in the mouse brain: young versus old, Neurobiol. Aging, 2007, 28, 1457–1462

    Article  CAS  PubMed  Google Scholar 

  29. Ikonomovic M.D., Abrahamson E.E., Uz T., Manev H., Dekosky S.T., Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer’s disease, J. Histochem. Cytochem., 2008, 56, 1065–1073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Firuzi O., Zhuo J., Chinnici C.M., Wisniewski T., Praticò, D., 5-Lipoxygenase gene disruption reduces amyloid-β pathology in a mouse model of Alzheimer’s disease, FASEB J., 2008, 22, 1169–1178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chu J., Praticò D., Pharmacological blockade of 5-lipoxygenase improves the amyloidotic phenotype of an Alzheimer’s disease transgenic mouse model involvement of Γ-secretase, Am. J. Pathol., 2011, 178, 1762–1769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Chu J., Giannopoulos P.F., Ceballos-Diaz C., Golde T.E., Praticò D., Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice, Mol. Neurodegener., 2012, 7, 1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chu J., Praticò D., 5-Lipoxygenase as an endogenous modulator of amyloid β formation in vivo, Ann. Neurol., 2011, 69, 34–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Imbimbo B.P., Giardina G.A., Γ-secretase inhibitors and modulators for the treatment of Alzheimer’s disease: disappointments and hopes, Curr. Top. Med. Chem., 2011, 11, 15550–15570

    Article  Google Scholar 

  35. Chu J., Giannopoulos P.F., Ceballos-Diaz C., Golde T.E., Praticò D., 5-Lipoxygenase gene transfer worsens memory, amyloid and tau brain pathologies in a mouse model of Alzheimer’s disease, Ann. Neurol., 2012, 72, 442–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Giannopoulos P.F., Chu J., Joshi Y.B., Sperow M., Li J.G., Kirby L.G., et al., Gene knockout of 5-lipoxygenase rescues synaptic dysfunction and improves memory in the triple-transgenic model of Alzheimer’s disease, Mol. Psychiatry, 2014, 19, 511–518

    Article  CAS  PubMed  Google Scholar 

  37. Chu J., Praticò D., 5-Lipoxygenase pharmacological blockade decreases tau phosphorylation in vivo: involvement of the cyclindependent kinase-5, Neurobiol. Aging, 2013, 34, 1549–1554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chu J., Li J.G., Ceballos-Diaz C., Golde T., Praticò D., The influence of 5-lipoxygenase on Alzheimer’s disease-related tau pathology: in vivo and in vitro evidence, Biol. Psychiatry, 2013, 74, 321–328

    Article  CAS  PubMed  Google Scholar 

  39. Chu J., Praticò D., Involvement of 5-lipoxygenase activating protein in the amyloidotic phenotype of an Alzheimer’s disease mouse model, J. Neuroinflmmation, 2012, 9, 127

    Article  CAS  Google Scholar 

  40. Joshi Y.B., Giannopoulos P.F., Chu J., Praticò D., Modulation of lipopolysaccharide-induced memory insult, Γ-secretase, and neuroinflammation in triple transgenic mice by 5-lipoxygenase, Neurobiol. Aging, 2014, 35, 1024–1031

    Article  CAS  PubMed  Google Scholar 

  41. Parachikova A., Vasilevko V., Cribbs D.H., LaFerla F.M., Green K.N., Reductions in amyloid-β-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation, J. Alzheimers Dis., 2010, 21, 527–542

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Ghosh S., Wu M.D., Shaftel S.S., Kyrkanides S., LaFerla F.M., Olschowka J.A., et al., Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model, J. Neurosci., 12, 5053–5064

  43. Tsitsopoulos P.P., Marklund N., Amyloid-β peptides and tau protein as biomarkers in cerebrospinal and interstitial fluid following traumatic brain injury: a review of experimental and clinical studies, Front. Neurol., 2013, 4, 79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Planel E., Richter K.E., Nolan C.E., Finley J.E., Liu L., Wen Y., et al., Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia, J. Neurosci, 2007, 27, 3090–3097

    Article  CAS  PubMed  Google Scholar 

  45. Yanamandra K., Kfoury N., Jiang H., Mahan T.E., Ma S., Maloney S.E., et al., Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo, Neuron, 2013, 80, 402–414

    Article  CAS  PubMed  Google Scholar 

  46. McGeer P.L., Schulzer M., McGeer E.G., Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies, Neurology, 1996, 22, 1–4

    Google Scholar 

  47. Stewart W.F., Kawas C., Corrada M., Metter E.J., Risk of Alzheimer’s disease and duration of NSAID use, Neurology, 1997, 48, 626–632

    Article  CAS  PubMed  Google Scholar 

  48. Jaturapatporn D., Isaac M.G., McCleery J., Tablet N., Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease, Cochrane Database Syst. Rev., 2012, 2, CD006378

    PubMed  Google Scholar 

  49. Jonsson T., Stefansson H., Steinberg S., Jonsdottir I., Jonsson P.V., Snaedal J., et al., Variant of TREM2 associated with the risk of Alzheimer’s disease, N. Engl. J. Med., 2013, 368, 107–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Praticò.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, Y.B., Praticò, D. Neuroinflammation and Alzheimer’s disease: lessons learned from 5-lipoxygenase. Translat.Neurosci. 5, 197–202 (2014). https://doi.org/10.2478/s13380-014-0225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-014-0225-7

Keywords

Navigation