Skip to main content
Log in

On some new identities for the Fibonomial coefficients

  • Regular Papers
  • Published:
Mathematica Slovaca

Abstract

Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows

$$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$

with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\). In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that

$$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$

holds for all non-negative integers n and l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FONTENÉ, G.: Généralisation d’ene formule connue, Nouv. Ann. Math. 4 (1915), 112.

    Google Scholar 

  2. HORADAM, A. F.: Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32 (1965), 437–446.

    Article  MATH  MathSciNet  Google Scholar 

  3. JARDEN, D.: Recurring Sequences: A Colletion of Papers, Riveon Lematematika, Jerusalem, 1966.

    Google Scholar 

  4. LUCA, F.— MARQUES, D.— STĂNICĂ, P.: On the spacings between C-nomial coefficients, J. Number Theory 130 (2010), 82–100.

    Article  MATH  MathSciNet  Google Scholar 

  5. MARQUES, D.— TOGBÉ, A.: Perfect powers among C-nomial coefficients, C. R. Math. Acad. Sci. Paris 348 (2010), 717–720.

    Article  MATH  MathSciNet  Google Scholar 

  6. MARQUES, D.— TROJOVSKÝ, P.: On some new sums of Fibonomial coefficients, Fibonacci Quart. 50 (2012), 155–163.

    MATH  MathSciNet  Google Scholar 

  7. RIORDAN, J.: Generating functions for powers of Fibonacci, Duke Math. J. 29 (1962), 5–12.

    Article  MATH  MathSciNet  Google Scholar 

  8. SHANNON, A. G.: A method of Carlitz applied to the k-th power generating function for Fibonacci numbers, Fibonacci Quart. 12 (1974), 293–299.

    MATH  MathSciNet  Google Scholar 

  9. SEIBERT, J.— TROJOVSKÝ, P.: On some identities for the Fibonomial coefficients, Math. Slovaca 55 (2005), 9–19.

    MATH  MathSciNet  Google Scholar 

  10. TORRETTO, R.— FUCHS, A.: Generalized binomial coefficients, Fibonacci Quart. 2 (1964), 296–302.

    MATH  MathSciNet  Google Scholar 

  11. VAJDA, S.: Fibonacci and Lucas Numbers, and the Golden Section, John Wiley and Sons, New York, 1989.

    MATH  Google Scholar 

  12. VOROBIEV, N. N.: Fibonacci Numbers, Birkhäuser, Basel, 2003.

    Google Scholar 

  13. WARD, M.: A calculus of sequences, Amer. J. Math. 58 (1936), 255–266.

    Article  MathSciNet  Google Scholar 

  14. SLOANE, N. J. A.: The On-Line Encyclopedia of Integer Sequences (OEIS). http://oeis.org/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Marques.

Additional information

Communicated by Stanislav Jakubec

Research supported in part by FEMAT-Brazil, CNPq-Brazil and Specific research 2103 UHK CZ.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, D., Trojovský, P. On some new identities for the Fibonomial coefficients. Math. Slovaca 64, 809–818 (2014). https://doi.org/10.2478/s12175-014-0241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s12175-014-0241-7

2010 Mathematics Subject Classification

Keywords

Navigation