Skip to main content
Log in

Influence of allelopathic activity of Galinsoga parviflora Cav. and Oxalis fontana Bunge on the early growth stages of cultivars Raphanus sativus L. var. radicula Pers

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The aim of the study was to evaluated the influence of aqueous extracts from Galinsoga parviflora and Oxalis fontana on the germination capacity and energy of Raphanus sativus var. radicula in three cultivars: ‘Krakowianka’, ‘Półdługa’, ‘Rowa’. After eight days of germination, the length of seedlings, the fresh and dry mass, the percentage of water content and the degree of destabilisation of cells membranes by measuring the outflow of electrolytes were determined. The aqueous extracts from fresh mass of aboveground parts of G. parviflora and O. fontana with concentrations of 5, 10 and 15% were used. The control group consisted of seeds watered with distilled water. The germination capacity in all radish varieties decreased with increase in the concentration of G. parviflora and O. fontana aquatic extracts. The length of underground parts of seedlings was significantly shorter on Petri dishes with extracts from O. fontana. With increasing concentration of extracts, the length of aboveground parts of seedlings on O. fontana extracts decreased, and on G. parviflora increased. In the case of fresh and dry mass, the extracts stimulated the growth of seedlings, with the exception of the ‘Krakowianka’ cultivar on substrates with 5% extracts. At the lowest concentrations of the extracts, the smallest percentage of electrolyte leakage was observed. For all three types of radish watered with extracts from O. fontana higher destabilisation of cell membranes was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afza N, Yasmeen S, Ferheen S, Malik A, Ali MI, Kalhoro MA, Ifzal R (2012) New aromatic esters from Galinsoga parviflora. J Asian Nat Prod Res 14(5):424–428. https://doi.org/10.1080/10286020.2012.657181

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Wardle DA (1994) Allelopathic potential of vegetative and flowering ragwort (Senecio jacobea L.) plants again associated pasture species. Plant Soil 164:61–68

    Article  CAS  Google Scholar 

  • Ali S, Zameer S, Yaqoob M (2017) Ethnobotanical, phytochemical and pharmacological properties of Galinsoga parviflora (Asteraceae): a review. Trop J Pharm Res 16(12):3023–3033. https://doi.org/10.4314/tjpr.v16i12.29

    Article  Google Scholar 

  • Atlas roślin naczyniowych Polski (Atlas of vascular plants of Poland). (2018) www.atlas-roslin.pl (accessed 16.01.2018)

  • Barabasz-Krasny B, Możdżeń K, Sołtys-Lelek A, Stachurska-Swakoń A (2018) Biological traits of Impatiens parviflora DC. under different habitat conditions. Not Bot Horti Agrobot 46(1):277–285. https://doi.org/10.15835/nbha46110970

    Article  Google Scholar 

  • Dai C, Luo W-J, Lia K, Li Z-Q, Pang J, Wang Z-X (2017) The allelopathic potential of Oxalis rubra on seedlings of Veronica persica under different environments. Pak J Bot 49(4):1491–1496

    CAS  Google Scholar 

  • Damalas CA (2008) Distribution, biology, and agricultural importance of Galinsoga parviflora (Asteraceae). Weed Biol Manag 8:147–153. https://doi.org/10.1111/j.1445-6664.2008.00290.x

    Article  Google Scholar 

  • De Cauwer B, Devos R, Claerhout S, Bulcke R, Reheul D (2014) Seed dormancy, germination, emergence and seed longevity in Galinsoga parviflora and G. quadriradiata. Weed Res 54:38–47. https://doi.org/10.1111/wre.12055

    Article  Google Scholar 

  • DellaGreca M, Previtera L, Purcaro R, Zarrelli A (2007) Cinnamic Ester derivatives from Oxalis pes-caprae (Bermuda buttercup). J Nat Prod 70(10):1664–1667. https://doi.org/10.1021/np0702786

    Article  CAS  PubMed  Google Scholar 

  • Derr JF (1994) Weed control in container-grown herbaceous perennials. Hortscience 29(2):95–97

    CAS  Google Scholar 

  • Di Castri F, Hansen AJ, Debussche M (1990) Biological invasions in Europe and the Mediterranean Basin. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Dong H-Y, Li Y, Wang Q, Yao G, Xia B (2010) Bioassay of allelopathy of water extracts from alien invasive plants Crassocephalum crepidioides and Galinsoga parviflora. J Plant Resour Environ 19(2):48–53

    Google Scholar 

  • Espinosa-Garcia FJ, Vazquez-Bravo R, Martinez-Ramos M (2003) Survival, germinability and fungal colonization of dimorphic achenes of the annual weed Galinsoga parviflora buried in the soil. Weed Res 43:269–275. https://doi.org/10.1046/j.1365-3180.2003.00343.x

    Article  Google Scholar 

  • Ferheen S, Afza N, Malik A, Iqbal L, Azam Rasool M, Irfan M, Bakhsh Tareen R (2009) Galinsosides A and B, bioactive flavanone glucosides from Galinsoga parviflora. J Enzyme Inhib Med Chem 24(5):1128–1132. https://doi.org/10.1080/14756360802667688

    Article  CAS  PubMed  Google Scholar 

  • Gaspar MC, Fonseca DA, Antunes MJ, Frigerio C, Gomes NGM, Vieira M, Santos AE, Cruz MT, Cotrim MD, Campos MG (2018) Polyphenolic characterisation and bioactivity of an Oxalis pes-caprae L. leaf extract. Nat Prod Res 32(6):732–738. https://doi.org/10.1080/14786419.2017.1335728

    Article  CAS  PubMed  Google Scholar 

  • Głowacka A (2013) The influence of strip cropping and weed control methods on weed diversity in dent maize (Zea mays L.), narrow-leafed lupin (Lupinus angustifolius L.) and oats (Avena sativa L.). Acta Agrobot 66(4):185–194. https://doi.org/10.5586/aa.2013.065

    Article  Google Scholar 

  • Gniazdowska A, Bogatek R (2005) Allelopathic interactions between plants. Multi-site action of allelochemicals. Acta Physiol Plant 27:395–407. https://doi.org/10.1007/s11738-005-0017-3

    Article  CAS  Google Scholar 

  • Guo ZQ, Zhao YG, Zhang FJ, Long R, Meng XD, Xin SX, Xu XY (2008) Allelopathic effects of the invasive plant Galisoga parviflora Cav. Lc et Descr. On Brassica pekinensis Rupr., Raphanus sativus L., Lactuca sativa L. var. romana Hort. And Brassica chinensis L. J Hebei Normal Univ Sci Tech 22:13–16

    CAS  Google Scholar 

  • Inderjit KL, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539. https://doi.org/10.1007/s00425-003-1054-z

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K (2004) Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol Manag 4(1):1–7. https://doi.org/10.1111/j.1445-6664.2003.00112.x

    Article  CAS  Google Scholar 

  • Kohut M, Anyszka Z, Golian J (2013) Zmiany w zachwaszczeniu i plonowanie wybranych gatunków warzyw w zależności od metody ochrony przed chwastami (changes in infestation and yielding of selected vegetable species depending on weed management method). J Res Applic Agricult Eng 58(3):255–260

    Google Scholar 

  • Lisek J (2012) Synanthropic flora of strawberry plantations and their surroundings. Veg Crops Res Bull 77:113–127. https://doi.org/10.2478/v10032-012-0020-3

    Article  Google Scholar 

  • Lollar M, Marble Ch (2015) Biology and management of oxalis (Oxalis stricta) in ornamental crop production. ENH1253, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. University of Florida pp. 1–6. https://edis.ifas.ufl.edu/pdffiles/EP/EP51400.pdf (accessed 11.01.2018)

  • Lovett Doust L, MacKinnon A, Lovett Doustt J (1985) Biology of Canadian weeds. 71. Oxalis stricta L., O. corniculata L., O. dillenii Jacq. Ssp. dillenii and O. dillenii Jacq. Ssp. filipes (small) Eiten. Can J Plant Sci 65(3):691–709. https://doi.org/10.4141/cjps85-090

    Article  Google Scholar 

  • Martinez-Ghersa MA, Ghersa CD, Benech-Arnold RL, Mac Donough R, Sanchez RA (2000) Adaptive traits regulating dormancy and germination of invasive species. Plant Spec Biol 15:127–137. https://doi.org/10.1046/j.1442-1984.2000.00033.x

    Article  Google Scholar 

  • Meiners SJ, Kong CH, Ladwig LM, Pisula NL, Lang KA (2012) Developing an ecological context for allelopathy. Plant Ecol 213(8):1221–1227. https://doi.org/10.1007/s11258-012-0078-5

    Article  Google Scholar 

  • Muzell-Trezzi M, Vidal RA, Balbinot AA, von Hertwig Bittencourt H, da Silva Souza Filho AP (2016) Allelopathy: driving mechanisms governing its activity in agriculture. J Plant Interact 11(1): 53–60. https://doi.org/10.1080/17429145.2016.1159342

    Article  Google Scholar 

  • Nowiński M (1961) Obecny stan badań nad allelopatią. Post Nauk Roln 3(69):39–57 [in Polish]

    Google Scholar 

  • Petsikos C, Dalias P, Troumbis AY (2007) Effects of Oxalis pes-caprae L. invasion in olive groves. Agric Ecosyst Environ 120(2–4):325–329. https://doi.org/10.1016/j.agee.2006.10.019

    Article  Google Scholar 

  • Podbielkowski Z, Studnik-Wójcikowska B (2003) Słownik roślin użytkowych (polski, łaciński, francuski, angielski, niemiecki, rosyjski). PWRiL, Warszawa. [in Polish]

  • Puła J, Barabasz-Krasny B, Możdżeń K, Sołtys-Lelek A, Lepiarczyk A (2016) Effect of aqueous extracts of sticky willy (Galium aparine L.) on the growth of seedlings of selected maize varieties (Zea mays L.). Not Bot Horti Agrobo 44(2): 518–524. https://doi.org/10.15835/nbha44210475

    Article  Google Scholar 

  • Raghavendra MP, Satish S, Raveesha KA (2006) Phytochemical analysis and antibacterial activity of Oxalis corniculata; a known medicinal plant. My Sci 1(1):72–78

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New York

    Google Scholar 

  • Ross AB, Savage GP, Martin RJ, Vanhanen L (1999) Oxalate in Oca (New Zealand yam) (Oxalis tuberosa Mol.). J Agric Food Chem 47:5019–5022. https://doi.org/10.1021/jf990332r

    Article  CAS  PubMed  Google Scholar 

  • Sayed M, Imam R, Siddiqui M, Raihanun-Nabi S, Aktar S, Das S (2016) Allelopathic activity of Leonurus siribicus L., on seed germination and seedling growth of wheat and identification of 4-hydroxy benzoic acid as an allelochemical by chromatography. Pak J Bot 48(3):1189–1195

    CAS  Google Scholar 

  • Shiraishi S, Watanabe I, Kuno K, Itani T, Fujii Y (2000) Allelopathic activity of Oxalis brasiliensis as a ground cover plant for weed management. A field study. J weed. Sci Technol 45(Suppl):76–77. [In Japanese]. https://doi.org/10.3719/weed.45.Supplement_76

    Article  Google Scholar 

  • Shiraishi S, Watanabe I, Kuno K, Ishii H, Fujii Y (2001) Effects of aqueous extracts of Oxalis spp. on spore germination and mycelial growth of plant pathogenic fungi. J Weed Sci Technol 46(Suppl.): 100–101 (in Japanese)

    Article  Google Scholar 

  • Shiraishi S, Watanabe I, Kuno K, Fujii Y (2002) Allelopathic activity of leaching from dry leaves and exudate from roots of ground cover plants assayed on agar. Weed Biol Manag 2(3):133–142. https://doi.org/10.1046/j.1445-6664.2002.00063.x

    Article  Google Scholar 

  • Shiraishi S, Watanabe I, Kuno K, Fujii Y (2005) Evaluation of the allelopathic activity of five Oxalidaceae cover plants and the demonstration of potent weed suppression by Oxalis species. Weed Biol Manag 5(3):128–136. https://doi.org/10.1111/j.1445-6664.2005.00167.x

    Article  Google Scholar 

  • Singh R, Hazarika UK (1996) Allelopathic effects of Galinsoga parviflora car. A Bidens pilosa L. on germination and seedling growth of soybean and groundnut. Allelopath J 3(1):89–92

    Google Scholar 

  • Śliwiński M, Szczęśniak E (2012) Chwasty pól uprawnych. Zielona Planeta 4(103):14–16 [In Polish]

    Google Scholar 

  • Szafer W, Pawłowski B (1959) Flora Polska. Rośliny naczyniowe Polski i ziem ościennych. T. VIII, p 323 [In Polish]

  • Travlos IS, Paspatis E, Psomadeli E (2008) Allelopathic potential of Oxalis pes-caprae tissues and root exudates as a tool for integrated weed management. J Agron 7(2):202–205. https://doi.org/10.3923/ja.2008.202.205

    Article  Google Scholar 

  • Virbickaite R, Sirvydas AP, Kerpauskas P, Vasinauskiene R (2006) The comparison of thermal and mechanical systems of weed control. Agron Res 4(special issue):451–455

    Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. NZ. J Ecol 21:1–16

    Google Scholar 

  • Warwick SI, Sweet RD (1983) The biology of Canadian weeds. 58. Galinsoga parviftora and G. quadriradiata (= G. ciliata). Can J Plant Sci 63:695–709. https://doi.org/10.4141/cjps83-087

    Article  Google Scholar 

  • Wójcik-Wojtkowiak D, Politycka B, Weyman-Kaczmarkowa W (1998) Allelopathy. Wyd Akad Rol, Poznań [In Polish]

  • Yang JC, Loewus FA (1975) Metabolic conversion of l-ascorbic acid to oxalic acid in oxalate-accumulating plants. Plant Physiol 56(2):283–285

    Article  CAS  Google Scholar 

  • Zając T, Zając M, Tokarska-Guzik B (1998) Kenophytes in flora of Poland: list, status and origin. Phytocoenosis 10(N.S):139–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Turisová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Możdżeń, K., Barabasz-Krasny, B., Zandi, P. et al. Influence of allelopathic activity of Galinsoga parviflora Cav. and Oxalis fontana Bunge on the early growth stages of cultivars Raphanus sativus L. var. radicula Pers. Biologia 73, 1187–1195 (2018). https://doi.org/10.2478/s11756-018-0144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-018-0144-0

Keywords

Navigation